Squares and overlaps in the Thue-Morse sequence and some variants
Shandy Brown; Narad Rampersad; Jeffrey Shallit; Troy Vasiga
RAIRO - Theoretical Informatics and Applications (2006)
- Volume: 40, Issue: 3, page 473-484
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topReferences
top- J.-P. Allouche, J. Currie, and J. Shallit, Extremal infinite overlap-free binary words. Electronic J. Combinatorics5 (1998), #R27 (electronic). URIhttp://www.combinatorics.org/Volume_5/Abstracts/v5i1r27.html
- J.-P. Allouche and J.O. Shallit, The ring of k-regular sequences. Theoret. Comput. Sci.98 (1992) 163–197.
- J.-P. Allouche and J.O. Shallit, The ring of k-regular sequences, II. Theoret. Comput. Sci.307 (2003) 3–29.
- J.-P. Allouche and J.O. Shallit, Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press (2003).
- J. Berstel, Axel Thue's Papers on Repetitions in Words: a Translation. Number 20 in Publications du Laboratoire de Combinatoire et d'Informatique Mathématique. Université du Québec à Montréal (February 1995).
- S. Brlek, Enumeration of factors in the Thue-Morse word. Disc. Appl. Math.24 (1989) 83–96.
- J.J. Pansiot, The Morse sequence and iterated morphisms. Inform. Process. Lett.12 (1981) 68–70.
- H. Prodinger and F.J. Urbanek, Infinite 0–1-sequences without long adjacent identical blocks. Discrete Math.28 (1979) 277–289.
- A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl.1 (1912) 1–67. Reprinted in Selected Mathematical Papers of Axel Thue, T. Nagell, editor, Universitetsforlaget, Oslo (1977) 413–478.