# Numerical solutions of the mass transfer problem

RAIRO - Operations Research (2006)

- Volume: 40, Issue: 1, page 1-17
- ISSN: 0399-0559

## Access Full Article

top## Abstract

top## How to cite

topDubuc, Serge, and Kagabo, Issa. "Numerical solutions of the mass transfer problem." RAIRO - Operations Research 40.1 (2006): 1-17. <http://eudml.org/doc/249746>.

@article{Dubuc2006,

abstract = {
Let μ and ν be two probability measures on the real line and
let c be a lower semicontinuous function on the plane. The mass
transfer problem consists in determining a measure ξ whose
marginals coincide with μ and ν, and whose total cost
∫∫ c(x,y)dξ(x,y) is minimum. In this paper we present
three algorithms to solve numerically this Monge-Kantorovitch problem
when the commodity being shipped is one-dimensional and not
necessarily confined to a bounded interval. We illustrate these
numerical methods and determine the convergence rate.
},

author = {Dubuc, Serge, Kagabo, Issa},

journal = {RAIRO - Operations Research},

keywords = {Continuous programming;
transportation; mass transfer; optimization.; continuous programming; transportation; optimization},

language = {eng},

month = {7},

number = {1},

pages = {1-17},

publisher = {EDP Sciences},

title = {Numerical solutions of the mass transfer problem},

url = {http://eudml.org/doc/249746},

volume = {40},

year = {2006},

}

TY - JOUR

AU - Dubuc, Serge

AU - Kagabo, Issa

TI - Numerical solutions of the mass transfer problem

JO - RAIRO - Operations Research

DA - 2006/7//

PB - EDP Sciences

VL - 40

IS - 1

SP - 1

EP - 17

AB -
Let μ and ν be two probability measures on the real line and
let c be a lower semicontinuous function on the plane. The mass
transfer problem consists in determining a measure ξ whose
marginals coincide with μ and ν, and whose total cost
∫∫ c(x,y)dξ(x,y) is minimum. In this paper we present
three algorithms to solve numerically this Monge-Kantorovitch problem
when the commodity being shipped is one-dimensional and not
necessarily confined to a bounded interval. We illustrate these
numerical methods and determine the convergence rate.

LA - eng

KW - Continuous programming;
transportation; mass transfer; optimization.; continuous programming; transportation; optimization

UR - http://eudml.org/doc/249746

ER -

## References

top- M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables. Washington, D.C. (1964). Zbl0171.38503
- E.J. Anderson and A.B. Philpott, Duality and an algorithm for a class of continuous transportation problems. Math. Oper. Res.9 (1984) 222–231. Zbl0538.90057
- E.J. Anderson and P. Nash, Linear Programming in Infinite-Dimensional Spaces. Theory and Application. John Wiley & Sons, Chichester (1987). Zbl0632.90038
- P.E. Appell, Mémoire sur les déblais et les remblais des systèmes continus ou discontinus. Mémoires présentés par divers savants 29, 2e série (1887) 181–208.
- P.E. Appell, Le problème géométrique des déblais et remblais. Gauthier-Villars, Paris (1928). Zbl54.0527.03
- S. Dubuc and M. Tanguay, Déplacement de matériel continu unidimensionnel à moindre coût. RAIRO Rech. Oper.,20 (1986) 139–161. Zbl0601.90104
- M. Fréchet, Sur les tableaux de corrélation dont les marges sont données. Ann. Univ. Lyon14 (1951) 53–77. Zbl0045.22905
- M.D. Grigoriadis, An efficient implementation of the network simplex method. Netflow in Pisa (Pisa, 1983). Math. Program. Stud.26 (1986) 83–111. Zbl0594.90025
- F.L. Hitchcock, The distribution of a product from several sources to numerous localities. J. Math. Phys.20 (1941) 224–230. Zbl0026.33904
- W. Hoeffding, Masstabinvariante Korrelations-theorie. Schr. Math. Inst. Univ. Berlin5 (1940) 181–233.
- L. Kantorovitch, On the translocation of masses. Doklady Akad. Nauk. SSSR37 (1942) 199–201. Zbl0061.09705
- H.G. Kellerer, Duality theorems for marginal problems. Z. Wahrsch. Verw. Gebiete67 (1984) 399–432. Zbl0535.60002
- V.L. Levin and A.A. Milyutin, The Problem of Mass Transfer with a Discontinuous Cost Function and the Mass Statement of the Duality for Convex Extremal Problems. Uspehi Mat. Nauk.34 (1979) 3–68. Zbl0437.46064
- G. Monge, Mémoire sur la théorie des déblais et des remblais. Mém. Math. Phys. Acad. Royale Sci., Paris (1781) 666–704.
- S.T. Rachev and L. Rüschendorf, Solution of some transportation problems with relaxed or additional constraints SIAM J. Control Optim.32 (1994), 673–689. Zbl0797.60019
- A.H. Tchen, Inequalities for distributions with given marginals Ann. Prob.8 (1980) 814–827. Zbl0459.62010

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.