How many bins should be put in a regular histogram
ESAIM: Probability and Statistics (2006)
- Volume: 10, page 24-45
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- H. Akaike, A new look at the statistical model identification. IEEE Trans. Automatic Control19 (1974) 716–723.
- A.R. Barron, L. Birgé and P. Massart. Risk bounds for model selection via penalization. Probab. Theory Relat. Fields113 (1999) 301–415.
- L. Birgé and P. Massart, From model selection to adaptive estimation, in Festschrift for Lucien Le Cam: Research Papers in Probability and Statistics, D. Pollard, E. Torgersen and G. Yang, Eds., Springer-Verlag, New York (1997) 55–87.
- L. Birgé and P. Massart, Gaussian model selection. J. Eur. Math. Soc.3 (2001) 203–268.
- G. Castellan, Modified Akaike's criterion for histogram density estimation. Technical Report. Université Paris-Sud, Orsay (1999).
- G. Castellan, Sélection d'histogrammes à l'aide d'un critère de type Akaike. CRAS330 (2000) 729–732.
- J. Daly, The construction of optimal histograms. Commun. Stat., Theory Methods17 (1988) 2921–2931.
- L. Devroye, A Course in Density Estimation. Birkhäuser, Boston (1987).
- L. Devroye, and L. Györfi, Nonparametric Density Estimation: The L1 View. John Wiley, New York (1985).
- L. Devroye and G. Lugosi, Combinatorial Methods in Density Estimation. Springer-Verlag, New York (2001).
- D. Freedman and P. Diaconis, On the histogram as a density estimator: L2 theory. Z. Wahrscheinlichkeitstheor. Verw. Geb.57 (1981) 453–476.
- P. Hall, Akaike's information criterion and Kullback-Leibler loss for histogram density estimation. Probab. Theory Relat. Fields85 (1990) 449–467.
- P. Hall and E.J. Hannan, On stochastic complexity and nonparametric density estimation. Biometrika75 (1988) 705–714.
- K. He and G. Meeden, Selecting the number of bins in a histogram: A decision theoretic approach. J. Stat. Plann. Inference61 (1997) 49–59.
- D.R.M. Herrick, G.P. Nason and B.W. Silverman, Some new methods for wavelet density estimation. Sankhya, Series A63 (2001) 394–411.
- M.C. Jones, On two recent papers of Y. Kanazawa. Statist. Probab. Lett.24 (1995) 269–271.
- Y. Kanazawa, Hellinger distance and Akaike's information criterion for the histogram. Statist. Probab. Lett.17 (1993) 293–298.
- L.M. Le Cam, Asymptotic Methods in Statistical Decision Theory. Springer-Verlag, New York (1986).
- L.M. Le Cam and G.L. Yang, Asymptotics in Statistics: Some Basic Concepts. Second Edition. Springer-Verlag, New York (2000).
- J. Rissanen, Stochastic complexity and the MDL principle. Econ. Rev.6 (1987) 85–102.
- M. Rudemo, Empirical choice of histograms and kernel density estimators. Scand. J. Statist.9 (1982) 65–78.
- D.W. Scott, On optimal and databased histograms. Biometrika66 (1979) 605–610.
- H.A. Sturges, The choice of a class interval. J. Am. Stat. Assoc.21 (1926) 65–66.
- C.C. Taylor, Akaike's information criterion and the histogram. Biometrika.74 (1987) 636–639.
- G.R. Terrell, The maximal smoothing principle in density estimation. J. Am. Stat. Assoc.85 (1990) 470–477.
- M.P. Wand, Data-based choice of histogram bin width. Am. Statistician51 (1997) 59–64.