# Periodic solutions for differential inclusions in ${\mathbb{R}}^{N}$

Michael E. Filippakis; Nikolaos S. Papageorgiou

Archivum Mathematicum (2006)

- Volume: 042, Issue: 2, page 115-123
- ISSN: 0044-8753

## Access Full Article

top## Abstract

top## How to cite

topFilippakis, Michael E., and Papageorgiou, Nikolaos S.. "Periodic solutions for differential inclusions in ${\mathbb {R}}^N$." Archivum Mathematicum 042.2 (2006): 115-123. <http://eudml.org/doc/249772>.

@article{Filippakis2006,

abstract = {We consider first order periodic differential inclusions in $\mathbb \{R\}^N$. The presence of a subdifferential term incorporates in our framework differential variational inequalities in $\mathbb \{R\}^N$. We establish the existence of extremal periodic solutions and we also obtain existence results for the “convex” and “nonconvex”problems.},

author = {Filippakis, Michael E., Papageorgiou, Nikolaos S.},

journal = {Archivum Mathematicum},

keywords = {multifunction; convex subdifferential; extremal periodic solution; Moreanu-Yosida approximation; multifunction; convex subdifferential; extremal periodic solution; Moreanu-Yosida approximation},

language = {eng},

number = {2},

pages = {115-123},

publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},

title = {Periodic solutions for differential inclusions in $\{\mathbb \{R\}\}^N$},

url = {http://eudml.org/doc/249772},

volume = {042},

year = {2006},

}

TY - JOUR

AU - Filippakis, Michael E.

AU - Papageorgiou, Nikolaos S.

TI - Periodic solutions for differential inclusions in ${\mathbb {R}}^N$

JO - Archivum Mathematicum

PY - 2006

PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno

VL - 042

IS - 2

SP - 115

EP - 123

AB - We consider first order periodic differential inclusions in $\mathbb {R}^N$. The presence of a subdifferential term incorporates in our framework differential variational inequalities in $\mathbb {R}^N$. We establish the existence of extremal periodic solutions and we also obtain existence results for the “convex” and “nonconvex”problems.

LA - eng

KW - multifunction; convex subdifferential; extremal periodic solution; Moreanu-Yosida approximation; multifunction; convex subdifferential; extremal periodic solution; Moreanu-Yosida approximation

UR - http://eudml.org/doc/249772

ER -

## References

top- Bader R., A topological fixed point theory for evolutions inclusions, Z. Anal. Anwendungen 20 (2001), 3–15. MR1826317
- Bourgain J., An averaging result for ${l}^{1}$-sequences and applications to weakly conditionally compact sets in ${L}^{1}\left(X\right)$, Israel J. Math. 32 (1979), 289–298. (1979) MR0571083
- Cornet B., Existence of slow solutions for a class differential inclusions, J. Math. Anal. Appl. 96 (1983), 130–147. (1983) MR0717499
- De Blasi F. S., Gorniewicz L., Pianigiani G., Topological degree and periodic solutions of differential inclusions, Nonlinear Anal. 37 (1999), 217–245. (1999) Zbl0936.34009MR1689752
- De Blasi F. S., Pianigiani G., Nonconvex valued differential inclusions in Banach spaces, J. Math. Anal. Appl. 157 (1991), 469–494. (1991) MR1112329
- Haddad G., Lasry J.-M., Periodic solutions of functional differential inclusions and fixed points of $\gamma $-selectionable correspondences, J. Math. Anal. Appl. 96 (1983), 295–312. (1983) MR0719317
- Halidias N., Papageorgiou N. S., Existence and relaxation results for nonlinear second order multivalued boundary value problems in ${\mathbb{R}}^{\mathbb{N}}$, J. Differential Equations 147 (1998), 123–154. (1998) MR1632661
- Henry C., Differential equations with discontinuous right hand side for planning procedures, J. Econom. Theory 4 (1972), 545–551. (1972) MR0449534
- Hu S., Kandilakis D., Papageorgiou N. S., Periodic solutions for nonconvex differential inclusions, Proc. Amer. Math. Soc. 127 (1999), 89–94. (1999) Zbl0905.34036MR1451808
- Hu S., Papageorgiou N. S., On the existence of periodic solutions for nonconvex valued differential inclusions in ${\mathbb{R}}^{\mathbb{N}}$, Proc. Amer. Math. Soc. 123 (1995), 3043–3050. (1995) MR1301503
- Hu S., Papageorgiou N. S., Handbook of Multivalued Analysis. Volume I: Theory, Kluwer, Dordrecht, The Netherlands (1997). (1997) Zbl0887.47001MR1485775
- Hu S., Papageorgiou N. S., Handbook of Multivalued Analysis. Volume II: Applications, Kluwer, Dordrecht, The Netherlands (2000). Zbl0943.47037MR1741926
- Li C., Xue X., On the existence of periodic solutions for differential inclusions, J. Math. Anal. Appl. 276 (2002), 168–183. Zbl1020.34015MR1944344
- Macki J., Nistri P., Zecca P., The existence of periodic solutions to nonautonomous differential inclusions, Proc. Amer. Math. Soc. 104 (1988), 840–844. (1988) Zbl0692.34042MR0931741
- Plaskacz S., Periodic solutions of differential inclusions on compact subsets of ${\mathbb{R}}^{\mathbb{N}}$, J. Math. Anal. Appl. 148 (1990), 202–212. (1990) MR1052055

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.