On modified Meyer-König and Zeller operators of functions of two variables
Lucyna Rempulska; Mariola Skorupka
Archivum Mathematicum (2006)
- Volume: 042, Issue: 3, page 273-284
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topRempulska, Lucyna, and Skorupka, Mariola. "On modified Meyer-König and Zeller operators of functions of two variables." Archivum Mathematicum 042.3 (2006): 273-284. <http://eudml.org/doc/249774>.
@article{Rempulska2006,
abstract = {This paper is motivated by Kirov results on generalized Bernstein polynomials given in (Kirov, G. H., A generalization of the Bernstein polynomials, Math. Balk. New Ser. bf 6 (1992), 147–153.). We introduce certain modified Meyer-König and Zeller operators in the space of differentiable functions of two variables and we study approximation properties for them. Some approximation properties of the Meyer-König and Zeller operators of differentiable functions of one variable are given in (Rempulska, L., Tomczak, K., On certain modified Meyer-König and Zeller operators, Grant PB-43-71/2004.) and (Rempulska, L., Skorupka, M., On strong approximation by modified Meyer-König and Zeller operators, Tamkang J. Math. (in print).).},
author = {Rempulska, Lucyna, Skorupka, Mariola},
journal = {Archivum Mathematicum},
keywords = {Meyer-König and Zeller operator; function of two variables; approximation theorem; approximation theorem},
language = {eng},
number = {3},
pages = {273-284},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On modified Meyer-König and Zeller operators of functions of two variables},
url = {http://eudml.org/doc/249774},
volume = {042},
year = {2006},
}
TY - JOUR
AU - Rempulska, Lucyna
AU - Skorupka, Mariola
TI - On modified Meyer-König and Zeller operators of functions of two variables
JO - Archivum Mathematicum
PY - 2006
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 042
IS - 3
SP - 273
EP - 284
AB - This paper is motivated by Kirov results on generalized Bernstein polynomials given in (Kirov, G. H., A generalization of the Bernstein polynomials, Math. Balk. New Ser. bf 6 (1992), 147–153.). We introduce certain modified Meyer-König and Zeller operators in the space of differentiable functions of two variables and we study approximation properties for them. Some approximation properties of the Meyer-König and Zeller operators of differentiable functions of one variable are given in (Rempulska, L., Tomczak, K., On certain modified Meyer-König and Zeller operators, Grant PB-43-71/2004.) and (Rempulska, L., Skorupka, M., On strong approximation by modified Meyer-König and Zeller operators, Tamkang J. Math. (in print).).
LA - eng
KW - Meyer-König and Zeller operator; function of two variables; approximation theorem; approximation theorem
UR - http://eudml.org/doc/249774
ER -
References
top- Abel U., The moments for the Meyer-König and Zeller operators, J. Approx. Theory 82 (1995), 352–361. (1995) Zbl0828.41009MR1348726
- Alkemade J. A. H., The second moment for the Meyer-König and Zeller operators, J. Approx. Theory 40 (1984), 261–273. (1984) Zbl0575.41013MR0736073
- Abel U., Della Vecchia B., Enhanced asymptotic approximation by linear operators, Facta Univ., Ser. Math. Inf. 19 (2004), 37–51.
- Becker M., Nessel R. J., A global approximation theorem for Meyer-König and Zeller operator, Math. Z. 160 (1978), 195–206. (1978) MR0510745
- Chen W., On the integral type Meyer-König and Zeller operators, Approx. Theory Appl. 2(3) (1986), 7–18. (1986) Zbl0613.41021MR0877624
- De Vore R. A., The Approximation of Continuous Functions by Positive Linear operators, New York, 1972. (1972)
- Fichtenholz G. M., Calculus, Vol. 1, Warsaw, 1964. (1964)
- Guo S., On the rate of convergence of integrated Meyer-König and Zeller operators for functions of bounded variation, J. Approx. Theory 56 (1989), 245–255. (1989) MR0990339
- Gupta V., A note on Meyer-König and Zeller operators for functions of bounded variation, Approx. Theory Appl. 18(3) (2002), 99–102. Zbl1073.41506MR1942355
- Hölzle G. E., On the degree of approximation of continuous functions by a class of sequences of linear positive operators, Indag. Math. 42 (1980), 171–181. (1980) Zbl0427.41013MR0577572
- Kirov G. H., A generalization of the Bernstein polynomials, Math. Balk. New Ser. bf 6 (1992), 147–153. (1992) Zbl0838.41017MR1182946
- Kirov G. H., Popova L., A generalization of the linear positive operators, Math. Balk. New Ser. 7 (1993), 149–162. (1993) Zbl0833.41016MR1270375
- Lupas A., Approximation properties of the -operators, Aequationes Math. 5 (1970), 19–37. (1970) MR0279495
- Meyer-König W., Zeller K., Bernsteinche Potenzreihen, Studia Math. 19 (1960), 89–94. (1960) MR0111965
- Rempulska L., Tomczak K., On certain modified Meyer-König and Zeller operators, Grant PB-43-71/2004. Zbl1107.41018
- Rempulska L., Skorupka M., On strong approximation by modified Meyer-König and Zeller operators, Tamkang J. Math. (in print). Zbl1119.41022MR2252622
- Timan A. F., Theory of Approximation of Functions of a Real Variable, Moscow, 1960 (Russian). (1960) MR0117478
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.