Periodic solutions for systems with nonsmooth and partially coercive potential
Archivum Mathematicum (2006)
- Volume: 042, Issue: 3, page 225-232
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topFilippakis, Michael E.. "Periodic solutions for systems with nonsmooth and partially coercive potential." Archivum Mathematicum 042.3 (2006): 225-232. <http://eudml.org/doc/249779>.
@article{Filippakis2006,
abstract = {In this paper we consider nonlinear periodic systems driven by the one-dimensional $p$-Laplacian and having a nonsmooth locally Lipschitz potential. Using a variational approach based on the nonsmooth Critical Point Theory, we establish the existence of a solution. We also prove a multiplicity result based on a nonsmooth extension of the result of Brezis-Nirenberg (Brezis, H., Nirenberg, L., Remarks on finding critical points, Comm. Pure Appl. Math. 44 (1991), 939–963.) due to Kandilakis-Kourogenis-Papageorgiou (Kandilakis, D., Kourogenis, N., Papageorgiou, N., Two nontrivial critical point for nosmooth functional via local linking and applications, J. Global Optim., to appear.).},
author = {Filippakis, Michael E.},
journal = {Archivum Mathematicum},
keywords = {locally linking Lipschitz function; generalized subdifferential; nonsmooth critical point theory; nonsmooth Palais-Smale condition; $p$-Laplacian; periodic system; locally linking Lipschitz function; generalized subdifferential; nonsmooth critical point theory},
language = {eng},
number = {3},
pages = {225-232},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Periodic solutions for systems with nonsmooth and partially coercive potential},
url = {http://eudml.org/doc/249779},
volume = {042},
year = {2006},
}
TY - JOUR
AU - Filippakis, Michael E.
TI - Periodic solutions for systems with nonsmooth and partially coercive potential
JO - Archivum Mathematicum
PY - 2006
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 042
IS - 3
SP - 225
EP - 232
AB - In this paper we consider nonlinear periodic systems driven by the one-dimensional $p$-Laplacian and having a nonsmooth locally Lipschitz potential. Using a variational approach based on the nonsmooth Critical Point Theory, we establish the existence of a solution. We also prove a multiplicity result based on a nonsmooth extension of the result of Brezis-Nirenberg (Brezis, H., Nirenberg, L., Remarks on finding critical points, Comm. Pure Appl. Math. 44 (1991), 939–963.) due to Kandilakis-Kourogenis-Papageorgiou (Kandilakis, D., Kourogenis, N., Papageorgiou, N., Two nontrivial critical point for nosmooth functional via local linking and applications, J. Global Optim., to appear.).
LA - eng
KW - locally linking Lipschitz function; generalized subdifferential; nonsmooth critical point theory; nonsmooth Palais-Smale condition; $p$-Laplacian; periodic system; locally linking Lipschitz function; generalized subdifferential; nonsmooth critical point theory
UR - http://eudml.org/doc/249779
ER -
References
top- Adams R., Sobolev Spaces, Pure and Applied Mathematics 65, Academic Press, New York/London 1975. (1975) Zbl0314.46030MR0450957
- Berger M. Schechter M., On the solvability of semilinear gradient operator equations, Adv. Math. 25 (1977), 97–132. (1977) MR0500336
- Brezis H., Nirenberg L., Remarks on finding critical points, Comm. Pure Appl. Math. 44 (1991), 939–963. (1991) Zbl0751.58006MR1127041
- Chang K. C., Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102–129. (1981) MR0614246
- Clarke F., Optimization and Nonsmooth Analysis, Wiley, New York 1983. (1983) Zbl0582.49001MR0709590
- Dang H., Oppenheimer S., Existence and uniqueness results for some nonlinear boundary value problems, J. Math. Anal. Appl. 198, (1996) 35–48. (198,) MR1373525
- del Pino M., Manasevich R., Murua A., Existence and multiplicity of solutions with prescribed period for a second order quasilinear ODE, Nonlinear Anal. 18, (1992) 79–92. (1992) MR1138643
- Fabry C., Fayyad D., Periodic solutions of second order differential equations with a -Laplacian and asymetric nonlinearities, Rend. Istit. Mat. Univ. Trieste 24 (1992), 207–227. (1992) MR1310080
- Gasinski L., Papageorgiou N. S., A multiplicity result for nonlinear second order periodic equations with nonsmooth potential, Bull. Belg. Math. Soc. Simon Stevin 9 (2002a), 245–258. Zbl1056.47056MR2017079
- Guo Z., Boundary value problems for a class of quasilinear ordinary differential equations, Differential Integral Equations 6 (1993), 705–719. (1993) MR1202567
- Hu S., Papageorgiou N. S., Handbook of Multivalued Analysis. Volume I: Theory, Kluwer, Dordrecht, The Netherlands 1997. (1997) Zbl0887.47001MR1485775
- Hu S., Papageorgiou N. S., Handbook of Multivalued Analysis. Volume II: Applications, Kluwer, Dordrecht, The Netherlands 2000. Zbl0943.47037MR1741926
- Kandilakis D., Kourogenis N., Papageorgiou N., Two nontrivial critical point for nosmooth functional via local linking and applications, J. Global Optim., to appear. MR2210278
- Kourogenis N., Papageorgiou N. S., Nonsmooth critical point theory and nonlinear elliptic equations at resonance, J. Austral. Math. Soc. Ser. A 69 (2000), 245–271. Zbl0999.58006MR1775181
- Kourogenis N., Papageorgiou N. S., A weak nonsmooth Palais-Smale condition and coercivity, Rend. Circ. Mat. Palermo 49 (2000), 521–526. Zbl1225.49021MR1809092
- Manasevich R., Mawhin J., Periodic solutions for nonlinear systems with -Laplacian-like operators, J. Differential Equations 145 (1998), 367–393. (1998) MR1621038
- Mawhin J., Willem M., Critical Point Theory and Hamiltonian Systems, Vol. 74 of Applied Mathematics Sciences, Springer-Verlag, New York 1989. (1989) Zbl0676.58017MR0982267
- Tang C. L., Wu X. P., Periodic solutions for second order systems with not uniformly coercive potential, J. Math. Anal. Appl. 259 (2001), 386–397. Zbl0999.34039MR1842066
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.