Periodic solutions for systems with nonsmooth and partially coercive potential

Michael E. Filippakis

Archivum Mathematicum (2006)

  • Volume: 042, Issue: 3, page 225-232
  • ISSN: 0044-8753

Abstract

top
In this paper we consider nonlinear periodic systems driven by the one-dimensional p -Laplacian and having a nonsmooth locally Lipschitz potential. Using a variational approach based on the nonsmooth Critical Point Theory, we establish the existence of a solution. We also prove a multiplicity result based on a nonsmooth extension of the result of Brezis-Nirenberg (Brezis, H., Nirenberg, L., Remarks on finding critical points, Comm. Pure Appl. Math. 44 (1991), 939–963.) due to Kandilakis-Kourogenis-Papageorgiou (Kandilakis, D., Kourogenis, N., Papageorgiou, N., Two nontrivial critical point for nosmooth functional via local linking and applications, J. Global Optim., to appear.).

How to cite

top

Filippakis, Michael E.. "Periodic solutions for systems with nonsmooth and partially coercive potential." Archivum Mathematicum 042.3 (2006): 225-232. <http://eudml.org/doc/249779>.

@article{Filippakis2006,
abstract = {In this paper we consider nonlinear periodic systems driven by the one-dimensional $p$-Laplacian and having a nonsmooth locally Lipschitz potential. Using a variational approach based on the nonsmooth Critical Point Theory, we establish the existence of a solution. We also prove a multiplicity result based on a nonsmooth extension of the result of Brezis-Nirenberg (Brezis, H., Nirenberg, L., Remarks on finding critical points, Comm. Pure Appl. Math. 44 (1991), 939–963.) due to Kandilakis-Kourogenis-Papageorgiou (Kandilakis, D., Kourogenis, N., Papageorgiou, N., Two nontrivial critical point for nosmooth functional via local linking and applications, J. Global Optim., to appear.).},
author = {Filippakis, Michael E.},
journal = {Archivum Mathematicum},
keywords = {locally linking Lipschitz function; generalized subdifferential; nonsmooth critical point theory; nonsmooth Palais-Smale condition; $p$-Laplacian; periodic system; locally linking Lipschitz function; generalized subdifferential; nonsmooth critical point theory},
language = {eng},
number = {3},
pages = {225-232},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Periodic solutions for systems with nonsmooth and partially coercive potential},
url = {http://eudml.org/doc/249779},
volume = {042},
year = {2006},
}

TY - JOUR
AU - Filippakis, Michael E.
TI - Periodic solutions for systems with nonsmooth and partially coercive potential
JO - Archivum Mathematicum
PY - 2006
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 042
IS - 3
SP - 225
EP - 232
AB - In this paper we consider nonlinear periodic systems driven by the one-dimensional $p$-Laplacian and having a nonsmooth locally Lipschitz potential. Using a variational approach based on the nonsmooth Critical Point Theory, we establish the existence of a solution. We also prove a multiplicity result based on a nonsmooth extension of the result of Brezis-Nirenberg (Brezis, H., Nirenberg, L., Remarks on finding critical points, Comm. Pure Appl. Math. 44 (1991), 939–963.) due to Kandilakis-Kourogenis-Papageorgiou (Kandilakis, D., Kourogenis, N., Papageorgiou, N., Two nontrivial critical point for nosmooth functional via local linking and applications, J. Global Optim., to appear.).
LA - eng
KW - locally linking Lipschitz function; generalized subdifferential; nonsmooth critical point theory; nonsmooth Palais-Smale condition; $p$-Laplacian; periodic system; locally linking Lipschitz function; generalized subdifferential; nonsmooth critical point theory
UR - http://eudml.org/doc/249779
ER -

References

top
  1. Adams R., Sobolev Spaces, Pure and Applied Mathematics 65, Academic Press, New York/London 1975. (1975) Zbl0314.46030MR0450957
  2. Berger M. Schechter M., On the solvability of semilinear gradient operator equations, Adv. Math. 25 (1977), 97–132. (1977) MR0500336
  3. Brezis H., Nirenberg L., Remarks on finding critical points, Comm. Pure Appl. Math. 44 (1991), 939–963. (1991) Zbl0751.58006MR1127041
  4. Chang K. C., Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102–129. (1981) MR0614246
  5. Clarke F., Optimization and Nonsmooth Analysis, Wiley, New York 1983. (1983) Zbl0582.49001MR0709590
  6. Dang H., Oppenheimer S., Existence and uniqueness results for some nonlinear boundary value problems, J. Math. Anal. Appl. 198, (1996) 35–48. (198,) MR1373525
  7. del Pino M., Manasevich R., Murua A., Existence and multiplicity of solutions with prescribed period for a second order quasilinear ODE, Nonlinear Anal. 18, (1992) 79–92. (1992) MR1138643
  8. Fabry C., Fayyad D., Periodic solutions of second order differential equations with a p -Laplacian and asymetric nonlinearities, Rend. Istit. Mat. Univ. Trieste 24 (1992), 207–227. (1992) MR1310080
  9. Gasinski L., Papageorgiou N. S., A multiplicity result for nonlinear second order periodic equations with nonsmooth potential, Bull. Belg. Math. Soc. Simon Stevin 9 (2002a), 245–258. Zbl1056.47056MR2017079
  10. Guo Z., Boundary value problems for a class of quasilinear ordinary differential equations, Differential Integral Equations 6 (1993), 705–719. (1993) MR1202567
  11. Hu S., Papageorgiou N. S., Handbook of Multivalued Analysis. Volume I: Theory, Kluwer, Dordrecht, The Netherlands 1997. (1997) Zbl0887.47001MR1485775
  12. Hu S., Papageorgiou N. S., Handbook of Multivalued Analysis. Volume II: Applications, Kluwer, Dordrecht, The Netherlands 2000. Zbl0943.47037MR1741926
  13. Kandilakis D., Kourogenis N., Papageorgiou N., Two nontrivial critical point for nosmooth functional via local linking and applications, J. Global Optim., to appear. MR2210278
  14. Kourogenis N., Papageorgiou N. S., Nonsmooth critical point theory and nonlinear elliptic equations at resonance, J. Austral. Math. Soc. Ser. A 69 (2000), 245–271. Zbl0999.58006MR1775181
  15. Kourogenis N., Papageorgiou N. S., A weak nonsmooth Palais-Smale condition and coercivity, Rend. Circ. Mat. Palermo 49 (2000), 521–526. Zbl1225.49021MR1809092
  16. Manasevich R., Mawhin J., Periodic solutions for nonlinear systems with p -Laplacian-like operators, J. Differential Equations 145 (1998), 367–393. (1998) MR1621038
  17. Mawhin J., Willem M., Critical Point Theory and Hamiltonian Systems, Vol. 74 of Applied Mathematics Sciences, Springer-Verlag, New York 1989. (1989) Zbl0676.58017MR0982267
  18. Tang C. L., Wu X. P., Periodic solutions for second order systems with not uniformly coercive potential, J. Math. Anal. Appl. 259 (2001), 386–397. Zbl0999.34039MR1842066

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.