Periodic solutions for a neutral functional differential equation with multiple variable lags
Cheng-Jun Guo; Gen Qiang Wang; Sui-Sun Cheng
Archivum Mathematicum (2006)
- Volume: 042, Issue: 1, page 1-10
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topGuo, Cheng-Jun, Wang, Gen Qiang, and Cheng, Sui-Sun. "Periodic solutions for a neutral functional differential equation with multiple variable lags." Archivum Mathematicum 042.1 (2006): 1-10. <http://eudml.org/doc/249790>.
@article{Guo2006,
abstract = {By means of the Krasnoselskii fixed piont theorem, periodic solutions are found for a neutral type delay differential system of the form \[ x^\{\prime \}\left( t\right) +cx^\{\prime \}\left( t-\tau \right) =A\left( t,x(t)\right) x\left( t\right) +f\left( t,x\left( t-r\_\{1\}\left( t\right) \right) ,\dots ,x\left( t-r\_\{k\}\left( t\right) \right) \right) . \]},
author = {Guo, Cheng-Jun, Wang, Gen Qiang, Cheng, Sui-Sun},
journal = {Archivum Mathematicum},
keywords = {neutral differential system; periodic solutions; fixed point theorem; neutral differential system; periodic solutions; fixed point theorem},
language = {eng},
number = {1},
pages = {1-10},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Periodic solutions for a neutral functional differential equation with multiple variable lags},
url = {http://eudml.org/doc/249790},
volume = {042},
year = {2006},
}
TY - JOUR
AU - Guo, Cheng-Jun
AU - Wang, Gen Qiang
AU - Cheng, Sui-Sun
TI - Periodic solutions for a neutral functional differential equation with multiple variable lags
JO - Archivum Mathematicum
PY - 2006
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 042
IS - 1
SP - 1
EP - 10
AB - By means of the Krasnoselskii fixed piont theorem, periodic solutions are found for a neutral type delay differential system of the form \[ x^{\prime }\left( t\right) +cx^{\prime }\left( t-\tau \right) =A\left( t,x(t)\right) x\left( t\right) +f\left( t,x\left( t-r_{1}\left( t\right) \right) ,\dots ,x\left( t-r_{k}\left( t\right) \right) \right) . \]
LA - eng
KW - neutral differential system; periodic solutions; fixed point theorem; neutral differential system; periodic solutions; fixed point theorem
UR - http://eudml.org/doc/249790
ER -
References
top- Li L. M., Periodic solution for a class of higher dimensional nonautonomous system, Acta Math. Appl. Sinica 12(3)(1989), 272–280. (1989) MR1033579
- Wang K., Periodic solutions to a class differential equations with deviating argument, Acta Math. Sinica 37(3)(1994), 409–413. (1994) MR1289267
- Wang Q. Y., Existence, uniqueness and stability of periodic solutions, Chinese Ann. Mathematics 15A(5)(1994), 537–545. (1994) Zbl0817.34025MR1332635
- Tang Y. B., Periodic solutions of a class of neutral type functional differential equation, Acta Math. Appl. Sinica, 23(3)(2000), 321–328. MR1797627
- Wang G. Q., Cheng S. S., A priori bounds for periodic solutions of a delay Rayleigh equation, Appl. Math. Lett. 12(1999), 41–44. (1999) Zbl0980.34068MR1749731
- Wang G. Q., Yan J. R., Existence of periodic solutions for -th order nonlinear delay differential equation, Far East J. Appl. Math. 3(1999), 129–134. (1999)
- Wang G. Q., Cheng S. S., A priori bounds for periodic solutions of a delay Rayleigh equation with damping, Tamkang J. Math. 34(3)(2003), 293–298. Zbl1051.34057MR2002244
- Wang G. Q., Yan J. R., Existence theorem of periodic positive solutions for the Rayleigh equation of retarded type, Portugaliae Math. 57(3)(2000), 153–160. Zbl0963.34069MR1759811
- Wang G. Q., Yan J. R., Existence of periodic solutions for second order nonlinear neutral delay equations, Acta Math. Sinica 47(2)(2004), 370–384. MR2074362
- Gaines R. E., Mawhin J. L., Coincidence degree and nonlinear differential equations, Lecture Notes in Math. 568, Springer, 1977. (1977) Zbl0339.47031MR0637067
- Reissig R., Sasone G., Conti R., Nonlinear equations of higher order, Noordhoff Inter. Pub. Leyden, 1974. (1974)
- Vidyasagar M., Nonlinear system analysis, Prentice Hall Inc., 1978. (1978)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.