Natural weak factorization systems
Archivum Mathematicum (2006)
- Volume: 042, Issue: 4, page 397-408
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topGrandis, Marco, and Tholen, Walter. "Natural weak factorization systems." Archivum Mathematicum 042.4 (2006): 397-408. <http://eudml.org/doc/249802>.
@article{Grandis2006,
abstract = {In order to facilitate a natural choice for morphisms created by the (left or right) lifting property as used in the definition of weak factorization systems, the notion of natural weak factorization system in the category $\mathcal \{K\}$ is introduced, as a pair (comonad, monad) over $\mathcal \{K\}^\{\bf 2\}$. The link with existing notions in terms of morphism classes is given via the respective Eilenberg–Moore categories.},
author = {Grandis, Marco, Tholen, Walter},
journal = {Archivum Mathematicum},
keywords = {Eilenberg-Moore categories},
language = {eng},
number = {4},
pages = {397-408},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Natural weak factorization systems},
url = {http://eudml.org/doc/249802},
volume = {042},
year = {2006},
}
TY - JOUR
AU - Grandis, Marco
AU - Tholen, Walter
TI - Natural weak factorization systems
JO - Archivum Mathematicum
PY - 2006
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 042
IS - 4
SP - 397
EP - 408
AB - In order to facilitate a natural choice for morphisms created by the (left or right) lifting property as used in the definition of weak factorization systems, the notion of natural weak factorization system in the category $\mathcal {K}$ is introduced, as a pair (comonad, monad) over $\mathcal {K}^{\bf 2}$. The link with existing notions in terms of morphism classes is given via the respective Eilenberg–Moore categories.
LA - eng
KW - Eilenberg-Moore categories
UR - http://eudml.org/doc/249802
ER -
References
top- Adámek J., Herrlich H., Rosický J., Tholen W., Weak factorization systems and topological functors, Appl. Categorical Structures 10 (2002), 237–249. Zbl0997.18002MR1916156
- Adámek J., Herrlich H., Strecker G. E., Abstract and Concrete Categories, Wiley (New York 1990). (1990) MR1051419
- Carboni A., Janelidze G., Decidable (= separable) objects and morphisms in lextensive categories, J. Pure Appl. Algebra 110 (1996), 219–240. (1996) Zbl0858.18004MR1393114
- Coppey L., Algèbres de decompositions et précatégories, Diagrammes 4 (Suppl.) (1980). (1980) Zbl0497.18015MR0684912
- Grandis M., Paré R., Limits in double categories, Cah. Topol. Géom. Différ. Catég. 40 (1999), 162–220. (1999) Zbl0939.18007MR1716779
- Gray J. W., Formal category theory: adjointness for 2-categories, Lecture Notes in Math. Vol. 391, Springer-Verlag (Berlin 1974). (1974) Zbl0285.18006MR0371990
- Korostenski M., Tholen W., Factorization systems as Eilenberg–Moore algebras, J. Pure Appl. Algebra 85 (1993), 57–72. (1993) Zbl0778.18001MR1207068
- Rosický J., Tholen W., Lax factorization algebras, J. Pure Appl. Algebra 175 (2002), 355–382. Zbl1013.18001MR1935984
- Rosický J., Tholen W., Factorization, fibration and torsion, preprint (York University 2006). Zbl1184.18009MR2369170
- Rosebrugh R., Wood R. J., Coherence for factorization algebras, Theory Appl. Categories 10 (2002), 134–147. Zbl0994.18001MR1883483
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.