Finely differentiable monogenic functions
Archivum Mathematicum (2006)
- Volume: 042, Issue: 5, page 301-305
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topLávička, Roman. "Finely differentiable monogenic functions." Archivum Mathematicum 042.5 (2006): 301-305. <http://eudml.org/doc/249807>.
@article{Lávička2006,
abstract = {Since 1970’s B. Fuglede and others have been studying finely holomorhic functions, i.e., ‘holomorphic’ functions defined on the so-called fine domains which are not necessarily open in the usual sense. This note is a survey of finely monogenic functions which were introduced in (Lávička, R., A generalisation of monogenic functions to fine domains, preprint.) like a higher dimensional analogue of finely holomorphic functions.},
author = {Lávička, Roman},
journal = {Archivum Mathematicum},
keywords = {monogenic function; fine topology; Dirac operator},
language = {eng},
number = {5},
pages = {301-305},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Finely differentiable monogenic functions},
url = {http://eudml.org/doc/249807},
volume = {042},
year = {2006},
}
TY - JOUR
AU - Lávička, Roman
TI - Finely differentiable monogenic functions
JO - Archivum Mathematicum
PY - 2006
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 042
IS - 5
SP - 301
EP - 305
AB - Since 1970’s B. Fuglede and others have been studying finely holomorhic functions, i.e., ‘holomorphic’ functions defined on the so-called fine domains which are not necessarily open in the usual sense. This note is a survey of finely monogenic functions which were introduced in (Lávička, R., A generalisation of monogenic functions to fine domains, preprint.) like a higher dimensional analogue of finely holomorphic functions.
LA - eng
KW - monogenic function; fine topology; Dirac operator
UR - http://eudml.org/doc/249807
ER -
References
top- Armitage D. H., Gardiner S. J., Classical Potential Theory, Springer, London, 2001. Zbl0972.31001MR1801253
- Borel É., Leçons sur les fonctions monogènes uniformes d’une variable complexe, Gauthier Villars, Paris, 1917. (1917)
- Fuglede B., Finely Harmonic Functions, Lecture Notes in Math. 289, Springer, Berlin, 1972. (1972) Zbl0248.31010MR0450590
- Fuglede B., Fine topology and finely holomorphic functions, In: Proc. 18th Scandinavian Congr. Math., Aarhus, 1980, Birkhäuser, Boston, 1981, 22–38. (1980) MR0633349
- Fuglede B., Sur les fonctions finement holomorphes, Ann. Inst. Fourier, Grenoble 31 (4) (1981), 57–88. (1981) Zbl0445.30040MR0644343
- Fuglede B., Fonctions BLD et fonctions finement surharmoniques, In: Séminaire de Théorie du Potentiel, Paris, No. 6, Lecture Notes in Math. 906, Springer, Berlin, 1982, 126–157. (1982) Zbl0484.31003MR0663563
- Fuglede B., Fonctions finement holomorphes de plusieurs variables - un essai, Lecture Notes in Math. 1198, Springer, Berlin, 1986, 133–145. (1986) Zbl0595.32008MR0874767
- Fuglede B., Finely Holomorphic Functions, A Survey, Rev. Roumaine Math. Pures Appl. 33 (4) (1988), 283–295. (1988) Zbl0671.31006MR0950128
- Gilbert J. E., Murray M. A. M., Clifford algebras and Dirac operators in harmonic analysis, Cambridge studies in advanced mathematics, vol. 26, Cambridge, 1991. (1991) Zbl0733.43001MR1130821
- Kilpeläinen T., Malý J., Supersolutions to degenerate elliptic equations on quasi open sets, Commun. Partial Differential Equations 17 (3&4) (1992), 371–405. (1992) MR1163430
- Lávička R., A generalisation of Fueter’s monogenic functions to fine domains, to appear in Rend. Circ. Mat. Palermo (2) Suppl. MR2287132
- Lávička R., A generalisation of monogenic functions to fine domains, preprint. MR2490593
- Lávička R., Finely continuously differentiable functions, preprint. Zbl1206.31010MR2462441
- Lyons T., Finely harmonic functions need not be quasi-analytic, Bull. London Math. Soc. 16 (1984), 413–415. (1984) Zbl0541.31002MR0749451
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.