The local equivalence problem in CR geometry

Martin Kolář

Archivum Mathematicum (2006)

  • Volume: 042, Issue: 5, page 253-266
  • ISSN: 0044-8753

Abstract

top
This article is dedicated to the centenary of the local CR equivalence problem, formulated by Henri Poincaré in 1907. The first part gives an account of Poincaré’s heuristic counting arguments, suggesting existence of infinitely many local CR invariants. Then we sketch the beautiful completion of Poincaré’s approach to the problem in the work of Chern and Moser on Levi nondegenerate hypersurfaces. The last part is an overview of recent progress in solving the problem on Levi degenerate manifolds.

How to cite

top

Kolář, Martin. "The local equivalence problem in CR geometry." Archivum Mathematicum 042.5 (2006): 253-266. <http://eudml.org/doc/249809>.

@article{Kolář2006,
abstract = {This article is dedicated to the centenary of the local CR equivalence problem, formulated by Henri Poincaré in 1907. The first part gives an account of Poincaré’s heuristic counting arguments, suggesting existence of infinitely many local CR invariants. Then we sketch the beautiful completion of Poincaré’s approach to the problem in the work of Chern and Moser on Levi nondegenerate hypersurfaces. The last part is an overview of recent progress in solving the problem on Levi degenerate manifolds.},
author = {Kolář, Martin},
journal = {Archivum Mathematicum},
keywords = {CR equivalence problem; Levi nondegenerate hyoersurfaces; Levi degenerate manifolds},
language = {eng},
number = {5},
pages = {253-266},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {The local equivalence problem in CR geometry},
url = {http://eudml.org/doc/249809},
volume = {042},
year = {2006},
}

TY - JOUR
AU - Kolář, Martin
TI - The local equivalence problem in CR geometry
JO - Archivum Mathematicum
PY - 2006
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 042
IS - 5
SP - 253
EP - 266
AB - This article is dedicated to the centenary of the local CR equivalence problem, formulated by Henri Poincaré in 1907. The first part gives an account of Poincaré’s heuristic counting arguments, suggesting existence of infinitely many local CR invariants. Then we sketch the beautiful completion of Poincaré’s approach to the problem in the work of Chern and Moser on Levi nondegenerate hypersurfaces. The last part is an overview of recent progress in solving the problem on Levi degenerate manifolds.
LA - eng
KW - CR equivalence problem; Levi nondegenerate hyoersurfaces; Levi degenerate manifolds
UR - http://eudml.org/doc/249809
ER -

References

top
  1. Baouendi M. S., Ebenfelt P., Rothschild L. P., Convergence and finite determination of formal CR mappings, J. Amer. Math. Soc. 13 (2000), 697–723. Zbl0958.32033MR1775734
  2. Baouendi M. S., Ebenfelt P., Rothschild L. P., Local geometric properties of real submanifolds in complex space, Bull. Amer. Math. Soc. (N.S.) 37 (3) (2000), 309–336. MR1754643
  3. Barletta E., Bedford E., Existence of proper mappings from domains in 2 , Indiana Univ. Math. J. 2 (1990), 315–338. (1990) MR1089041
  4. Beals M., Fefferman C., Grossman R., Strictly pseudoconvex domains in n , Bull. Amer. Math. Soc. 8 (1983), 125–322. (1983) MR0684898
  5. Beloshapka V. K., On the dimension of the group of automorphisms of an analytic hypersurface, Math. USSR, Izv. 14 (1980), 223–245. (1980) Zbl0456.32015MR0534592
  6. Beloshapka V. K., Ezhov V. V., Normal forms and model hypersurfaces in 2 , preprint. 
  7. Cartan E., Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, I, Ann. Math. Pura Appl. 11 (1932), 17–90. (1932) 
  8. Cartan E., Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, II, Ann. Scuola Norm. Sup. Pisa 1 (1932), 333–354. (1932) MR1556687
  9. Chern S. S., Moser J., Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219–271. (1974) MR0425155
  10. D’Angelo J. P., Orders od contact, real hypersurfaces and applications, Ann. of Math. (2) 115 (1982), 615–637. (1982) MR0657241
  11. Ebenfelt P., New invariant tensors in CR structures and a normal form for real hypersurfaces at a generic Levi degeneracy, J. Differential Geom. 50 (1998), 207–247. (1998) Zbl0945.32020MR1684982
  12. Ebenfelt P., Lamel B., Zaitsev D., Degenerate real hypersurfaces in 2 with few automorphisms, arXiv:math.CV/0605540. 
  13. Ebenfelt P., Huang X., Zaitsev D., The equivalence problem and rigidity for hypersurfaces embedded into hyperquadrics, Amer. J. Math. 127 (2005), 169–191. (191.) MR2115664
  14. Fefferman C., Parabolic invariant theory in complex analysis, Adv. Math. 31 (1979), 131–262. (1979) Zbl0444.32013MR0526424
  15. Isaev A. V., Krantz S. G., Domains with non-compact automorphism group: a survey, Adv. Math. 146 (1) (1999), 1–38. (1999) Zbl1040.32019MR1706680
  16. Jacobowitz H., An introduction to CR structures, Math. Surveys Monogr. 32, AMS 1990. (1990) Zbl0712.32001MR1067341
  17. Juhlin R., [unknown], PhD-thesis, UCSD Zbl1219.32020
  18. Kohn J. J., Boundary behaviour of ¯ on weakly pseudoconvex manifolds of dimension two, J. Differential Geom. 6 (1972), 523–542. (1972) MR0322365
  19. Kolář M., Normal forms for hypersurfaces of finite type in 2 , Math. Res. Lett. 12 (2005), 523–542. MR2189248
  20. Kolář M., Local symmetries of finite type hypersurfaces in 2 , Sci. China A 48 (2006), 1633–1641. MR2288220
  21. Kowalski R., A hypersurface in 2 whose stability group is not determined by 2-jets, Proc. Amer. Math. Soc. 130 (12) (2002), 3679–3686. (electronic) MR1920048
  22. Kruzhilin N. G., Loboda A. V., Linearization of local automorphisms of pseudoconvex surfaces, Dokl. Akad. Nauk SSSR 271 (1983), 280–282. (1983) Zbl0582.32040MR0718188
  23. Poincaré H., Les fonctions analytique de deux variables et la représentation conforme, Rend. Circ. Mat. Palermo 23 (1907), 185–220. (1907) 
  24. Segre B., Intorno al problem di Poincaré della rappresentazione pseudo-conform, Rend. Accad. Lincei 13 (1931), 676–683. (1931) 
  25. Stanton N., A normal form for rigid hypersurfaces in 2 , Amer. J. Math. 113 (1991), 877–910. (1991) MR1129296
  26. Vitushkin A. G., Real analytic hypersurfaces in complex manifolds, Russ. Math. Surv. 40 (1985), 1–35. (1985) Zbl0588.32025MR0786085
  27. Webster S. M., On the Moser normal form at a non-umbilic point, Math. Ann. 233 (1978), 97–102. (1978) Zbl0358.32013MR0486511
  28. Wells R. O., Jr., The Cauchy-Riemann equations and differential geometry, Bull. Amer. Math. Soc. (N.S.) 6 (2) (1982), 187–199. (1982) Zbl0496.32012MR0640945
  29. Wong P., A construction of normal forms for weakly pseudoconvex CR manifolds in 2 , Invent. Math. 69 (1982), 311–329. (1982) MR0674409
  30. Zaitsev D., Unique determination of local CR-maps by their jets: A survey, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Suppl. 13 (2002), 295–305. Zbl1098.32018MR1984108

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.