On integers with a special divisibility property
William D. Banks; Florian Luca
Archivum Mathematicum (2006)
- Volume: 042, Issue: 1, page 31-42
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topBanks, William D., and Luca, Florian. "On integers with a special divisibility property." Archivum Mathematicum 042.1 (2006): 31-42. <http://eudml.org/doc/249814>.
@article{Banks2006,
abstract = {In this note, we study those positive integers $n$ which are divisible by $\sum _\{d|n\}\lambda (d)$, where $\lambda (\cdot )$ is the Carmichael function.},
author = {Banks, William D., Luca, Florian},
journal = {Archivum Mathematicum},
keywords = {Euler function; Carmichael function; Euler function; Carmichael function},
language = {eng},
number = {1},
pages = {31-42},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On integers with a special divisibility property},
url = {http://eudml.org/doc/249814},
volume = {042},
year = {2006},
}
TY - JOUR
AU - Banks, William D.
AU - Luca, Florian
TI - On integers with a special divisibility property
JO - Archivum Mathematicum
PY - 2006
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 042
IS - 1
SP - 31
EP - 42
AB - In this note, we study those positive integers $n$ which are divisible by $\sum _{d|n}\lambda (d)$, where $\lambda (\cdot )$ is the Carmichael function.
LA - eng
KW - Euler function; Carmichael function; Euler function; Carmichael function
UR - http://eudml.org/doc/249814
ER -
References
top- Bang A. S., Taltheoretiske Undersøgelser, Tidsskrift Mat. 4 (5) (1886), 70–80, 130–137.
- De Koninck J. M., Luca F., Positive integers divisible by the sum of their prime factors, Mathematika, to appear. MR2261843
- Dickson L. E., A new extension of Dirichlet’s theorem on prime numbers, Messenger of Math. 33 (1904), 155–161. (1904)
- Hardy G. H., Littlewood J. E., Some problems on partitio numerorum III. On the expression of a number as a sum of primes, Acta Math. 44 (1923), 1–70. (1923) MR1555183
- Ivić A., The Riemann-Zeta Function, Theory and Applications, Dover Publications, Mineola, New York, 2003. Zbl1034.11046MR1994094
- Luca F., Pomerance C., On the number of divisors of the Euler function, Publ. Math. Debrecen, to appear. MR2288471
- Tenenbaum G., Introduction to Analytic and Probabilistic Number Theory, Cambridge University Press, 1995. (1995) Zbl0880.11001MR1342300
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.