A nonlinear periodic system with nonsmooth potential of indefinite sign
Michael E. Filippakis; Nikolaos S. Papageorgiou
Archivum Mathematicum (2006)
- Volume: 042, Issue: 3, page 205-213
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topFilippakis, Michael E., and Papageorgiou, Nikolaos S.. "A nonlinear periodic system with nonsmooth potential of indefinite sign." Archivum Mathematicum 042.3 (2006): 205-213. <http://eudml.org/doc/249815>.
@article{Filippakis2006,
abstract = {In this paper we consider a nonlinear periodic system driven by the vector ordinary $p$-Laplacian and having a nonsmooth locally Lipschitz potential, which is positively homogeneous. Using a variational approach which exploits the homogeneity of the potential, we establish the existence of a nonconstant solution.},
author = {Filippakis, Michael E., Papageorgiou, Nikolaos S.},
journal = {Archivum Mathematicum},
keywords = {locally Lipschitz function; generalized subdifferential; $p$-Laplacian; homogeneous function; variational method; Poincare-Wirtinger inequality; potential indefinite in sign; locally Lipschitz function; generalized subdifferential; -Laplacian; homogeneous function; variational method},
language = {eng},
number = {3},
pages = {205-213},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {A nonlinear periodic system with nonsmooth potential of indefinite sign},
url = {http://eudml.org/doc/249815},
volume = {042},
year = {2006},
}
TY - JOUR
AU - Filippakis, Michael E.
AU - Papageorgiou, Nikolaos S.
TI - A nonlinear periodic system with nonsmooth potential of indefinite sign
JO - Archivum Mathematicum
PY - 2006
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 042
IS - 3
SP - 205
EP - 213
AB - In this paper we consider a nonlinear periodic system driven by the vector ordinary $p$-Laplacian and having a nonsmooth locally Lipschitz potential, which is positively homogeneous. Using a variational approach which exploits the homogeneity of the potential, we establish the existence of a nonconstant solution.
LA - eng
KW - locally Lipschitz function; generalized subdifferential; $p$-Laplacian; homogeneous function; variational method; Poincare-Wirtinger inequality; potential indefinite in sign; locally Lipschitz function; generalized subdifferential; -Laplacian; homogeneous function; variational method
UR - http://eudml.org/doc/249815
ER -
References
top- Adly S., Goeleven D., Homoclinic orbits for a class of hemivariational inequalities, Appl. Anal. 58 (1995), 229–240. (1995) Zbl0829.49007MR1383190
- Adly S., Goeleven D., Motreanu D., Periodic and homoclinic solutions for a class of unilateral problems, Discrete Contin. Dynam. Systems 3 (1997), 579–590. (1997) Zbl0948.37013MR1465127
- Adly S., Motreanu D., Periodic solutions for second-order differential equations involving nonconvex superpotentials, J. Global Optim. 17 (2000), 9–17. Zbl1055.34080MR1807964
- Antonacci F., Existence of periodic solutions of Hamiltonian systems with potential indefinite in sign, Nonlinear Anal. 29 (1997), 1353–1364. (1997) Zbl0894.34036MR1484908
- Ben Naoum A. K., Troestler C., Willem M., Existence and multiplicity results for homogeneous second order differential equations, J. Differential Equations 112 (1994), 239–249. (1994) Zbl0808.58013MR1287560
- Clarke F. H., A new approach to Lagrange multipliers, Math. Oper. Res. I (1976), 165–174. (1976) Zbl0404.90100MR0414104
- Denkowski Z., Migorski S., Papageorgiou N. S., An introduction to Nonlinear Analysis. Theory, Kluwer/Plenum, New York (2003). Zbl1040.46001MR2024162
- Denkowski Z., Migorski S., Papageorgiou N. S., An introduction to Nonlinear Analysis. Applications, Kluwer/Plenum, New York (2003). Zbl1054.47001MR2024161
- Girardi M., Matzeu M., Existence and multiplicity results for periodic solutions for superquadratic systems where the potential changes sign, Nonlinear Differential Equations Appl. 2 (1995), 35–61. (1995) MR1322202
- Lassoued L., Solutions periodiques d’un systeme differentiel non lineaire du second order avec changement de sign, Ann. Math. Pura Appl. 156 (1990), 76–111. (1990) MR1080211
- Lassoued L., Periodic solutions of a second order superquadratic system with a change of sign in the potential, J. Differential Equations 93 (1991), 1–18. (1991) Zbl0736.34041MR1122304
- Papageorgiou E. H., Papageorgiou N. S., Existence of solutions and of multiple solutions for nonlinear nonsmooth periodic systems, Czechoslovak Math. J. 54 (2004), 347–371. Zbl1080.34532MR2059256
- Tang C. L., Wu X. P., Periodic solutions for second order Hamiltonian systems with a change sign potential, J. Math. Anal. 292 (2004), 506–516. Zbl1078.34023MR2047627
- Xu Y. T., Guo Z. M., Existence of periodic solutions to second-order Hamiltonian systems with potential indefinite in sign, Nonlinear Anal. 51 (2002), 1273–1283. Zbl1157.37329MR1926629
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.