Algebraic theory of affine curvature tensors
Novica Blažić; Peter Gilkey; S. Nikčević; Udo Simon
Archivum Mathematicum (2006)
- Volume: 042, Issue: 5, page 147-168
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topBlažić, Novica, et al. "Algebraic theory of affine curvature tensors." Archivum Mathematicum 042.5 (2006): 147-168. <http://eudml.org/doc/249816>.
@article{Blažić2006,
abstract = {We use curvature decompositions to construct generating sets for the space of algebraic curvature tensors and for the space of tensors with the same symmetries as those of a torsion free, Ricci symmetric connection; the latter naturally appear in relative hypersurface theory.},
author = {Blažić, Novica, Gilkey, Peter, Nikčević, S., Simon, Udo},
journal = {Archivum Mathematicum},
keywords = {algebraic curvature tensors; affine curvature tensors; algebraic curvature tensors; affine curvature tensors},
language = {eng},
number = {5},
pages = {147-168},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Algebraic theory of affine curvature tensors},
url = {http://eudml.org/doc/249816},
volume = {042},
year = {2006},
}
TY - JOUR
AU - Blažić, Novica
AU - Gilkey, Peter
AU - Nikčević, S.
AU - Simon, Udo
TI - Algebraic theory of affine curvature tensors
JO - Archivum Mathematicum
PY - 2006
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 042
IS - 5
SP - 147
EP - 168
AB - We use curvature decompositions to construct generating sets for the space of algebraic curvature tensors and for the space of tensors with the same symmetries as those of a torsion free, Ricci symmetric connection; the latter naturally appear in relative hypersurface theory.
LA - eng
KW - algebraic curvature tensors; affine curvature tensors; algebraic curvature tensors; affine curvature tensors
UR - http://eudml.org/doc/249816
ER -
References
top- Bokan N., On the complete decomposition of curvature tensors of Riemannian manifolds with symmetric connection, Rend. Circ. Mat. Palermo XXIX (1990), 331–380. (1990) Zbl0728.53016MR1119735
- Díaz-Ramos J. C., García-Río E., A note on the structure of algebraic curvature tensors, Linear Algebra Appl. 382 (2004), 271–277. Zbl1056.53014MR2050112
- Fiedler B., Determination of the structure of algebraic curvature tensors by means of Young symmetrizers, Seminaire Lotharingien de Combinatoire B48d (2003). 20 pp. Electronically published: http://www.mat.univie.ac.at/slc/; see also math.CO/0212278. Zbl1043.53016MR1988613
- Gilkey P., Geometric properties of natural operators defined by the Riemann curvature tensor, World Scientific Publishing Co., Inc., River Edge, NJ, 2001. Zbl1007.53001MR1877530
- Singer I. M., Thorpe J. A., The curvature of -dimensional Einstein spaces, 1969 Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 355–365. Zbl0199.25401MR0256303
- Simon U., Schwenk-Schellschmidt A., Viesel H., Introduction to the affine differential geometry of hypersurfaces, Science University of Tokyo 1991. (1991) MR1200242
- Strichartz R., Linear algebra of curvature tensors and their covariant derivatives, Can. J. Math. XL (1988), 1105–1143. (1988) Zbl0652.53012MR0973512
- Weyl H., Zur Infinitesimalgeometrie: Einordnung der projektiven und der konformen Auffassung, Gött. Nachr. (1921), 99–112. (1921)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.