On weighted spaces of functions harmonic in n

Albert I. Petrosyan

Commentationes Mathematicae Universitatis Carolinae (2006)

  • Volume: 47, Issue: 2, page 233-240
  • ISSN: 0010-2628

Abstract

top
The paper establishes integral representation formulas in arbitrarily wide Banach spaces b ω p ( n ) of functions harmonic in the whole n .

How to cite

top

Petrosyan, Albert I.. "On weighted spaces of functions harmonic in $\mathbb {R}^n$." Commentationes Mathematicae Universitatis Carolinae 47.2 (2006): 233-240. <http://eudml.org/doc/249847>.

@article{Petrosyan2006,
abstract = {The paper establishes integral representation formulas in arbitrarily wide Banach spaces $b^p_\omega (\mathbb \{R\}^n)$ of functions harmonic in the whole $\mathbb \{R\}^n$.},
author = {Petrosyan, Albert I.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {weighted spaces; harmonic functions; integral representation; isometry; weighted spaces; harmonic functions; integral representation; isometry},
language = {eng},
number = {2},
pages = {233-240},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On weighted spaces of functions harmonic in $\mathbb \{R\}^n$},
url = {http://eudml.org/doc/249847},
volume = {47},
year = {2006},
}

TY - JOUR
AU - Petrosyan, Albert I.
TI - On weighted spaces of functions harmonic in $\mathbb {R}^n$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2006
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 47
IS - 2
SP - 233
EP - 240
AB - The paper establishes integral representation formulas in arbitrarily wide Banach spaces $b^p_\omega (\mathbb {R}^n)$ of functions harmonic in the whole $\mathbb {R}^n$.
LA - eng
KW - weighted spaces; harmonic functions; integral representation; isometry; weighted spaces; harmonic functions; integral representation; isometry
UR - http://eudml.org/doc/249847
ER -

References

top
  1. Petrosyan A.I., On weighted classes of harmonic functions in the unit ball of 𝐑 n , Complex Var. Theory Appl. 50 12 (2005), 953-966. (2005) MR2164690
  2. Petrosyan A.I., On A ø p m e g a spaces in the unit ball of n , J. Anal. Appl. 3 1 47-53 (2005). (2005) MR2110499
  3. Djrbashian M.M., On canonical representation of functions meromorphic in the unit disc (in Russian), Dokl. Akad. Nauk of Armenia (1945), 3 1 3-9. (1945) 
  4. Djrbashian M.M., On the representability problem of analytic functions (in Russian), Soobsch. Inst. Math. and Mech. AN Armenii 2 (1948), 3-40. (1948) 
  5. Jerbashian A.M., On the theory of weighted classes of area integrable regular functions, Complex Var. Theory Appl. 50 3 155-183 (2005). (2005) Zbl1081.46024MR2123953
  6. Rudin W., Real and Complex Analysis, McGraw-Hill, New York, 1987. Zbl1038.00002MR0924157
  7. Axler S., Bourdon P., Ramsey W., Harmonic Function Theory, Springer, New York, 2001. MR1805196

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.