An infinitary version of Sperner's Lemma
Commentationes Mathematicae Universitatis Carolinae (2006)
- Volume: 47, Issue: 3, page 503-514
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHohti, Aarno. "An infinitary version of Sperner's Lemma." Commentationes Mathematicae Universitatis Carolinae 47.3 (2006): 503-514. <http://eudml.org/doc/249850>.
@article{Hohti2006,
abstract = {We prove an extension of the well-known combinatorial-topological lemma of E. Sperner to the case of infinite-dimensional cubes. It is obtained as a corollary to an infinitary extension of the Lebesgue Covering Dimension Theorem.},
author = {Hohti, Aarno},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {simplex; colouring; covering dimension; point-finite; fixed point; algebraic topology; simplex; colouring; covering dimension; point-finite; fixed point; algebraic topology},
language = {eng},
number = {3},
pages = {503-514},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {An infinitary version of Sperner's Lemma},
url = {http://eudml.org/doc/249850},
volume = {47},
year = {2006},
}
TY - JOUR
AU - Hohti, Aarno
TI - An infinitary version of Sperner's Lemma
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2006
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 47
IS - 3
SP - 503
EP - 514
AB - We prove an extension of the well-known combinatorial-topological lemma of E. Sperner to the case of infinite-dimensional cubes. It is obtained as a corollary to an infinitary extension of the Lebesgue Covering Dimension Theorem.
LA - eng
KW - simplex; colouring; covering dimension; point-finite; fixed point; algebraic topology; simplex; colouring; covering dimension; point-finite; fixed point; algebraic topology
UR - http://eudml.org/doc/249850
ER -
References
top- Benyamini Y., Sternfeld Y., Spheres in infinite-dimensional normed spaces are Lipschitz contractible, Proc. Amer. Math. Soc. 88:3 (1983), 439-445. (1983) Zbl0518.46010MR0699410
- Brown A.B., Cairns S., Strengthening of Sperner's lemma applied to homology theory, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 113-114. (1961) Zbl0097.38702MR0146831
- Cohen D.I.A., On the Sperner lemma, J. Combinatorial Theory 2 (1967), 585-587. (1967) Zbl0163.18104MR0214047
- Engelking R., Dimension Theory, Polish Scientific Publishers, Warszawa, 1978. Zbl0401.54029MR0482697
- Erdös P., Galvin F., Hajnal A., On set-systems having large chromatic number and not containing prescribed subsystems, in: Infinite and Finite Sets (A. Hajnal, R. Rado, V.T. Sós, Eds.), North-Holland, Amsterdam, 1975, pp.425-513. MR0398876
- Fan Ky, A generalization of Tucker's combinatorial lemma with topological applications, Ann. of Math. (2) 56 (1952), 431-437. (1952) Zbl0047.42004MR0051506
- Fried J., Personal communication, .
- Goebel K., On the minimal displacement of points under Lipschitzian mappings, Pacific J. Math. 45 (1973), 151-163. (1973) Zbl0265.47046MR0328708
- Isbell J.R., Uniform Spaces, Mathematical Surveys 12, Amer. Math. Soc., Providence, Rhode Island, 1964. Zbl0124.15601MR0170323
- Knaster B., Kuratowski C., Mazurkiewicz S., Ein Beweis des Fixpunksatzes für -dimensionale Simplexe, Fund. Math. 14 (1929), 132-137. (1929)
- Kryński S., Remarks on matroids and Sperner's lemma, European J. Combin. 11 (1990), 485-488. (1990) Zbl0727.05015MR1075536
- Kuhn H.W., Some combinatorial lemmas in topology, IBM J. Res. Develop. 4 (1960), 508-524. (1960) Zbl0109.15603MR0124038
- Lindström S., On matroids and Sperner's lemma, European J. Combin. 2 (1981), 65-66. (1981) Zbl0473.05022MR0611933
- Lóvasz L., Matroids and Sperner's lemma, European J. Combin. 1 (1980), 65-66. (1980) Zbl0443.05025MR0576768
- Mani P., Zwei kombinatorisch-geometrische Sätze vom Typus Sperner-Tucker-Ky Fan, Monatsh. Math. 71 (1967), 427-435. (1967) Zbl0173.26202MR0227859
- Pelant J., Combinatorial properties of uniformities, General Topology and its Relations to Modern Analysis and Algebra IV, Lecture Notes in Mathematics 609, Springer, Berlin-Heidelberg-New York, 1977, pp.154-165. Zbl0371.54054MR0500846
- Pelant J., Embeddings into , Topology Appl. 57 (1994), 2-3 259-269. (1994) MR1278027
- Pelant J., Rödl V., On coverings of infinite-dimensional metric spaces. Topological, algebraical and combinatorial structures. Frolík's memorial volume, Discrete Math. 108 (1992), 1-3 75-81. (1992) MR1189831
- Rödl V., Small spaces with large point-character, European J. Combin. 8 (1987), 55-58. (1987) MR0884064
- Smith J.C., Characterizations of metric-dependent dimension functions, Proc. Amer. Math. Soc. 19:6 (1968), 1264-1269. (1968) Zbl0169.25103MR0232365
- Sperner E., Neuer Beweis für die Invarianz der Dimensionzahl und des Gebietes, Abh. Math. Sem. Hamburg 6 (1928), 265-272. (1928)
- Sperner E., Kombinatorik bewerter Komplexe, Abh. Math. Sem. Univ. Hamburg 39 (1973), 21-43. (1973) MR0332498
- Stone A.H., Universal spaces for some metrizable uniformities, Quart. J. Math. Oxford, Ser. (2) 11 (1960), 105-115. (1960) Zbl0096.37402MR0116308
- Ščepin E.V., On a problem of Isbell, Soviet Math. Dokl. 16 (1975), 685-687. (1975) MR0380743
- Tucker A.W., Some topological properties of disk and sphere, in: Proc. First Canadian Math. Congress, Montreal, Canada, 1945, pp.285-309. Zbl0061.40305MR0020254
- Vidossich G., Uniform spaces of countable type, Proc. Amer. Math. Soc. 25:3 (1970), 551-553. (1970) Zbl0181.50903MR0261546
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.