Regularity of weak solutions to certain degenerate elliptic equations
Commentationes Mathematicae Universitatis Carolinae (2006)
- Volume: 47, Issue: 4, page 681-693
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topCavalheiro, Albo Carlos. "Regularity of weak solutions to certain degenerate elliptic equations." Commentationes Mathematicae Universitatis Carolinae 47.4 (2006): 681-693. <http://eudml.org/doc/249852>.
@article{Cavalheiro2006,
abstract = {In this article we establish the existence of higher order weak derivatives of weak solutions of Dirichlet problem for a class of degenerate elliptic equations.},
author = {Cavalheiro, Albo Carlos},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {degenerate elliptic equations; weighted Sobolev spaces; degenerate elliptic equation; weighted Sobolev spaces},
language = {eng},
number = {4},
pages = {681-693},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Regularity of weak solutions to certain degenerate elliptic equations},
url = {http://eudml.org/doc/249852},
volume = {47},
year = {2006},
}
TY - JOUR
AU - Cavalheiro, Albo Carlos
TI - Regularity of weak solutions to certain degenerate elliptic equations
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2006
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 47
IS - 4
SP - 681
EP - 693
AB - In this article we establish the existence of higher order weak derivatives of weak solutions of Dirichlet problem for a class of degenerate elliptic equations.
LA - eng
KW - degenerate elliptic equations; weighted Sobolev spaces; degenerate elliptic equation; weighted Sobolev spaces
UR - http://eudml.org/doc/249852
ER -
References
top- Fabes E., Jerison D., Kenig C., The Wiener test for degenerate elliptic equations, Ann. Inst. Fourier (Grenoble) 32 3 (1982), 151-182. (1982) MR0688024
- Fabes E., Kenig C., Serapioni R., The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 1 (1982), 77-116. (1982) Zbl0498.35042MR0643158
- Franchi B., Serapioni R., Pointwise estimates for a class of strongly degenerate elliptic operators: a geometrical approach, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 4 (1987), 527-568. (1987) Zbl0685.35046MR0963489
- Garcia-Cuerva J., Rubio de Francia J., Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies 116, North-Holland, Amsterdam, 1985. MR0848147
- Gilbarg D., Trudinger N., Elliptic Partial Differential Equations of Second Order, Springer, Berlin-New York, 1977. Zbl1042.35002MR0473443
- Heinonen J., Kilpeläinen T., Martio O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs, Oxford University Press, New York, 1993. MR1207810
- Muckenhoupt B., Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. (1972) Zbl0236.26016MR0293384
- Turesson B.O., Nonlinear potential theory and weighted Sobolev spaces, Lecture Notes in Math. 1736, Springer, Berlin, 2000. Zbl0949.31006MR1774162
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.