On the “zero-two” law for positive contractions in the Banach-Kantorovich lattice L p ( , μ )

Inomjon Ganiev; Farrukh Mukhamedov

Commentationes Mathematicae Universitatis Carolinae (2006)

  • Volume: 47, Issue: 3, page 427-436
  • ISSN: 0010-2628

Abstract

top
In the present paper we prove the “zero-two” law for positive contractions in the Banach-Kantorovich lattices L p ( , μ ) , constructed by a measure μ with values in the ring of all measurable functions.

How to cite

top

Ganiev, Inomjon, and Mukhamedov, Farrukh. "On the “zero-two” law for positive contractions in the Banach-Kantorovich lattice $L^p(\nabla ,\mu )$." Commentationes Mathematicae Universitatis Carolinae 47.3 (2006): 427-436. <http://eudml.org/doc/249859>.

@article{Ganiev2006,
abstract = {In the present paper we prove the “zero-two” law for positive contractions in the Banach-Kantorovich lattices $L^p(\nabla ,\mu )$, constructed by a measure $\mu $ with values in the ring of all measurable functions.},
author = {Ganiev, Inomjon, Mukhamedov, Farrukh},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Banach-Kantorovich lattice; ``zero-two'' law; positive contraction; Banach-Kantorovich lattice; ``zero-two'' law},
language = {eng},
number = {3},
pages = {427-436},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the “zero-two” law for positive contractions in the Banach-Kantorovich lattice $L^p(\nabla ,\mu )$},
url = {http://eudml.org/doc/249859},
volume = {47},
year = {2006},
}

TY - JOUR
AU - Ganiev, Inomjon
AU - Mukhamedov, Farrukh
TI - On the “zero-two” law for positive contractions in the Banach-Kantorovich lattice $L^p(\nabla ,\mu )$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2006
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 47
IS - 3
SP - 427
EP - 436
AB - In the present paper we prove the “zero-two” law for positive contractions in the Banach-Kantorovich lattices $L^p(\nabla ,\mu )$, constructed by a measure $\mu $ with values in the ring of all measurable functions.
LA - eng
KW - Banach-Kantorovich lattice; ``zero-two'' law; positive contraction; Banach-Kantorovich lattice; ``zero-two'' law
UR - http://eudml.org/doc/249859
ER -

References

top
  1. Benderskiy O.Ya., L p ( m ) -spaces for measures with values in a topological semifield, Doklady Akad. Nauk UzSSR, 1976, n.9, 3-4 (Russian). 
  2. Chilin V.I., Ganiev I.G., An individual ergodic theorem for contractions in the Banach-Kantorovich lattice L p ( , μ ) , Russian Math. (Iz. VUZ) 44 (2000), 7 77-79. (2000) MR1803997
  3. Ganiev I.G., Measurable bundles of Banach lattices, Uzbek. Mat. Zh. 5 (1998), 14-21 (Russian). (1998) MR1802533
  4. Ganiev I.G., Measurable bundles of metrizable topological spaces, Doklady Akad. Nauk Rep. Uzb. 4 (1999), 8-11 (Russian). (1999) 
  5. Ganiev I.G., Martingales in the Banach-Kantorovich’s lattices L p ( ^ , μ ^ ) , Proc. Int. Conf. Math. and its Appl. in New Millenium, Univ. Putra, Malaysia, 2001, pp,52-59. 
  6. Ganiev I.G., Chilin V.I., Measurable bundles of noncommutative L p -spaces associated with a center-valued trace, Siberian Adv. Math. 12 (2002), 4 19-33. (2002) MR1984635
  7. Gutman A.E., Banach bundles in the theory of lattice-normed spaces, III, Siberian Adv. Math. 3 (1993), 4 8-40. (1993) MR1323890
  8. Gutman A.E., Banach fiberings in the theory of lattice-normed spaces. Order-compatible linear operators, Trudy Inst. Mat. 29 (1995), Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat., Novosibirsk, 1995, pp.63-211 (Russian). (1995) MR1774033
  9. Foguel S.R., On the ``zero-two'' law, Israel J. Math. 10 (1971), 275-280. (1971) Zbl0229.60056MR0298759
  10. Kantorovich L.V., Vulih B.Z., Pinsker A.G., Functional Analysis in Partially Ordered Spaces, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1950 (Russian). MR0038006
  11. Katznelson Y., Tzafriri L., On power bounded operators, J. Funct. Anal. 68 (1986), 313-328. (1986) Zbl0611.47005MR0859138
  12. Kusraev A.G., Vector Duality and its Applications, Novosibirsk, Nauka, 1985 (Russian). Zbl0616.49010MR0836135
  13. Kusraev A.G., Dominanted Ooperators, Mathematics and its Applications, 519, Kluwer Academic Publishers, Dordrecht, 2000. MR1793005
  14. Ornstein D., Sucheston L., An operator theorem on L 1 convergence to zero with applications to Markov kernels, Ann. Math. Statis. 41 (1970), 1631-1639. (1970) Zbl0284.60068MR0272057
  15. Sarymsakov T.A., Topological Semifields and its Applications, Tashkent, Fan, 1989 (Russian). MR1200017
  16. Vulih B.Z., Introduction to Theory of Partially Ordered Spaces, Moscow, 1961 (Russian); English translation: Wolters-Noordhoff, Groningen, 1967. MR0224522
  17. Woyczynski W.A., Geometry and martingales in Banach spaces, Lecture Notes in Math., vol. 472, Springer, Berlin, 1975, pp.235-283. Zbl0353.60044MR0394131
  18. Zaharopol R., The modulus of a regular linear operators and the “zero-two” law in L p -spaces ( 1 < p < , p 2 ) , J. Funct. Anal. 68 (1986), 300-312. (1986) MR0859137
  19. Zaharopol R., On the ``zero-two'' law for positive contractions, Proc. Edinburgh Math. Soc. 32 (1989), 363-370. (1989) Zbl0663.47028MR1015480

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.