On the boundary of 2-dimensional ideal polyhedra
Commentationes Mathematicae Universitatis Carolinae (2006)
- Volume: 47, Issue: 2, page 359-367
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topVrontakis, Emmanuel. "On the boundary of 2-dimensional ideal polyhedra." Commentationes Mathematicae Universitatis Carolinae 47.2 (2006): 359-367. <http://eudml.org/doc/249880>.
@article{Vrontakis2006,
abstract = {It is proved that for every two points in the visual boundary of the universal covering of a $2$-dimensional ideal polyhedron, there is an infinity of paths joining them.},
author = {Vrontakis, Emmanuel},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {CAT$(-1)$ spaces; ideal polyhedron; visual boundary; CAT spaces; ideal polyhedron; visual boundary},
language = {eng},
number = {2},
pages = {359-367},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the boundary of 2-dimensional ideal polyhedra},
url = {http://eudml.org/doc/249880},
volume = {47},
year = {2006},
}
TY - JOUR
AU - Vrontakis, Emmanuel
TI - On the boundary of 2-dimensional ideal polyhedra
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2006
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 47
IS - 2
SP - 359
EP - 367
AB - It is proved that for every two points in the visual boundary of the universal covering of a $2$-dimensional ideal polyhedron, there is an infinity of paths joining them.
LA - eng
KW - CAT$(-1)$ spaces; ideal polyhedron; visual boundary; CAT spaces; ideal polyhedron; visual boundary
UR - http://eudml.org/doc/249880
ER -
References
top- Benakli N., Polyédres hyperboliques, passage du local au global, Thése, Université de Paris-Sud, 1992.
- Bourdon M., Structure conforme au bord et flot géodésique d’un CAT-espace, Enseign. Math. 41 (1995), 63-102. (1995) MR1341941
- Coornaert M., Sur les groupes proprement discontinus d'isometries des espaces hyperboliques au sens de Gromov, Thèse, U.L.P., 1990. Zbl0777.53044
- Charitos C., Papadopoulos A., The geometry of ideal -dimensional simplicial complexes, Glasgow Math. J. 43 39-66 (2001). (2001) Zbl0977.57003MR1825722
- Charitos C., Papadopoulos A., Hyperbolic structures and measured foliations on -dimensional complexes, Monatsh. Math. 139 1-17 (2003). (2003) Zbl1029.57003MR1981114
- Charitos C., Papadopoulos A., On the isometries of ideal polyhedra, Rend. Circ. Mat. Palermo (2) 54 1 (2005), 71-80. (2005) Zbl1194.57006MR2150807
- Charitos C., Tsapogas G., Geodesic flow on ideal polyhedra, Canad. J. Math. 49 4 696-707 (1997). (1997) Zbl0904.52004MR1471051
- Charitos C., Tsapogas G., Complexity of geodesics on -dimensional ideal polyhedra and isotopies, Math. Proc. Camb. Phil. Soc. 121 343-358 (1997). (1997) Zbl0890.57047MR1426528
- Ghys E., de la Harpe P., Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Mathematics, vol. 83, Birkhäuser, Boston, 1990, pp.1-25. Zbl0731.20025MR1086648
- Gromov M., Structures Métriques pour les Variétés Riemanniennes, J. Lafontaine and P. Pansu, Eds., Fernand Nathan, Paris, 1981. Zbl0509.53034MR0682063
- Gromov M., Hyperbolic Groups, in Essays in Group Theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp.75-263. Zbl1022.20501MR0919829
- Haglund F., Les polyédres de Gromov, Thése, Université de Lyon I, 1992. Zbl0749.52011MR1133493
- Kapovich I., Benakli N., Boundaries of hyperbolic groups, Combinatorial and Geometric Group Theory (New York, 2000/Hoboken, NJ, 2001), Contemp. Math. 296, Amer. Math. Soc., Providence, RI, 2002, pp.39-93. Zbl1044.20028MR1921706
- Paulin F., Constructions of hyperbolic groups via hyperbolizations of polyhedra, in: Group Theory from a Geometrical Viewpoint, ICTP, Trieste, Italy, 1990, E. Ghys and A. Haefliger, Eds., World Sci. Publishing, River Edge, NJ, 1991, pp.313-372. Zbl0843.20032MR1170371
- Thurston W.P., Three-dimensional Geometry and Topology, Princeton University Press, Princeton, NJ, 1997. Zbl0873.57001MR1435975
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.