On large selforthogonal modules

Gabriella D'Este

Commentationes Mathematicae Universitatis Carolinae (2006)

  • Volume: 47, Issue: 4, page 549-560
  • ISSN: 0010-2628

Abstract

top
We construct non faithful direct summands of tilting (resp. cotilting) modules large enough to inherit a functorial tilting (resp. cotilting) behaviour.

How to cite

top

D'Este, Gabriella. "On large selforthogonal modules." Commentationes Mathematicae Universitatis Carolinae 47.4 (2006): 549-560. <http://eudml.org/doc/249884>.

@article{DEste2006,
abstract = {We construct non faithful direct summands of tilting (resp. cotilting) modules large enough to inherit a functorial tilting (resp. cotilting) behaviour.},
author = {D'Este, Gabriella},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {partial tilting and partial cotilting modules; sincere and selforthogonal modules; partial tilting modules; partial cotilting modules; sincere modules; selforthogonal modules},
language = {eng},
number = {4},
pages = {549-560},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On large selforthogonal modules},
url = {http://eudml.org/doc/249884},
volume = {47},
year = {2006},
}

TY - JOUR
AU - D'Este, Gabriella
TI - On large selforthogonal modules
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2006
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 47
IS - 4
SP - 549
EP - 560
AB - We construct non faithful direct summands of tilting (resp. cotilting) modules large enough to inherit a functorial tilting (resp. cotilting) behaviour.
LA - eng
KW - partial tilting and partial cotilting modules; sincere and selforthogonal modules; partial tilting modules; partial cotilting modules; sincere modules; selforthogonal modules
UR - http://eudml.org/doc/249884
ER -

References

top
  1. Anderson F.W., Fuller K.R., Rings and categories of modules, Graduate Texts in Math. 13, Springer, New York, 1992. Zbl0765.16001MR1245487
  2. Angeleri Hügel L., Tonolo A., Trlifaj J., Tilting preenvelopes and cotilting precovers, Algebr. Represent. Theory 4 (2001), 155-170. (2001) Zbl0999.16007MR1834843
  3. Auslander M., Reiten I., Smalø S.O., Representation Theory of Artin Algebras, Cambridge University Press, Cambridge, 1995. MR1314422
  4. Bazzoni S., A characterization of n -cotilting and n -tilting modules, J. Algebra 273 (2004), 359-372. (2004) Zbl1051.16007MR2032465
  5. Bazzoni S., n -cotilting modules and pure-injectivity, Bull. London Math. Soc. 36 5 (2004), 599-612. (2004) Zbl1085.16004MR2070436
  6. Buan A.B., Solberg Ø., Relative cotilting theory and almost complete cotilting modules, CMS Conf. Proc. 24, Amer. Math. Soc., Providence, 1998, pp.77-92. Zbl0926.16013MR1648616
  7. Colpi R., Tilting modules and * -modules, Comm. Algebra 21 4 (1993), 1095-1102. (1993) MR1209922
  8. Colby R.R., Fuller K.R., Equivalence and Duality for Module Categories, Cambridge University Press, Cambridge, 2004. Zbl1069.16001MR2048277
  9. Colpi R., D'Este G., Tonolo A., Quasi-tilting modules and counter equivalences, J. Algebra 191 (1997), 461-494. (1997) Zbl0876.16004MR1448804
  10. Colpi R., D'Este G., Tonolo A., Corrigendum, J. Algebra 206 (1998), 370-370. (1998) MR1637300
  11. Coelho F.U., Happel D., Unger L., Complements to partial tilting modules, J. Algebra 170 (1994), 184-205. (1994) Zbl0834.16012MR1302837
  12. D'Este G., On tilting and cotilting-type modules, Comment. Math. Univ. Carolin. 46.2 (2005), 281-291. (2005) Zbl1106.16009MR2176892
  13. D'Este G., On partial tilting modules and bounded complexes, manuscript. 
  14. Happel D., Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, Cambridge University Press, Cambridge, 1988. Zbl0635.16017MR0935124
  15. Happel D., Selforthogonal modules, Abelian groups and modules (Padova, 1994), Math. Appl. 343, Kluwer Acad. Publ., Dordrecht, 1995, pp.257-276. Zbl0867.16004MR1378204
  16. Happel D., Reiten I., Smalø S.O., Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120 575 (1996). (1996) MR1327209
  17. Happel D., Ringel C.M., Construction of tilted algebras, Lecture Notes in Math. 903, Springer, Berlin-New York, 1981, pp.125-144. Zbl0503.16025MR0654707
  18. Happel D., Unger L., Complements and the generalized Nakayama conjecture, CMS Conf. Proc. 24, Amer. Math. Soc., Providence, 1998, pp.293-310. Zbl0944.16010MR1648633
  19. Mantese F., Complements of projective almost complete tilting modules, Comm. Algebra 33 (2005), 9 2921-2940. (2005) MR2175371
  20. Miyachi J., Extensions of ring and tilting complexes, J. Pure Appl. Algebra 105 (1995), 183-194. (1995) MR1365875
  21. Miyashita Y., Tilting modules of finite projective dimension, Math. Z. 193 (1986), 113-146. (1986) Zbl0578.16015MR0852914
  22. Ringel C.M., Tame algebras and integral quadratic forms, Lecture Notes in Math. 1099, Springer, Berlin, 1984. Zbl0546.16013MR0774589
  23. Rickard J., Morita theory for derived categories, J. London Math. Soc. (2) 39 (1989), 436-456. (1989) Zbl0642.16034MR1002456

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.