On weakly measurable stochastic processes and absolutely summing operators

V. Marraffa

Mathematica Bohemica (2006)

  • Volume: 131, Issue: 4, page 379-391
  • ISSN: 0862-7959

Abstract

top
A characterization of absolutely summing operators by means of McShane integrable stochastic processes is considered.

How to cite

top

Marraffa, V.. "On weakly measurable stochastic processes and absolutely summing operators." Mathematica Bohemica 131.4 (2006): 379-391. <http://eudml.org/doc/249893>.

@article{Marraffa2006,
abstract = {A characterization of absolutely summing operators by means of McShane integrable stochastic processes is considered.},
author = {Marraffa, V.},
journal = {Mathematica Bohemica},
keywords = {Pettis integral; McShane integral; amart; uniform amart; absolutely summing operators; Pettis integral; McShane integral; amart; uniform amart},
language = {eng},
number = {4},
pages = {379-391},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On weakly measurable stochastic processes and absolutely summing operators},
url = {http://eudml.org/doc/249893},
volume = {131},
year = {2006},
}

TY - JOUR
AU - Marraffa, V.
TI - On weakly measurable stochastic processes and absolutely summing operators
JO - Mathematica Bohemica
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 131
IS - 4
SP - 379
EP - 391
AB - A characterization of absolutely summing operators by means of McShane integrable stochastic processes is considered.
LA - eng
KW - Pettis integral; McShane integral; amart; uniform amart; absolutely summing operators; Pettis integral; McShane integral; amart; uniform amart
UR - http://eudml.org/doc/249893
ER -

References

top
  1. 10.1007/BF00534238, Z. Wahrscheinlichkeitstheor. Verw. Geb. 41 (1978), 177–191. (1978) Zbl0391.60005MR0471065DOI10.1007/BF00534238
  2. 10.1073/pnas.63.2.266, Proc. Nat. Acad. Sci. U.S.A. 63 (1969), 266–279. (1969) Zbl0186.20302MR0274697DOI10.1073/pnas.63.2.266
  3. Linear Operators, Part I, Interscience, New York, 1958. (1958) 
  4. Stopping Times and Directed Sets, Cambridge University Press, New York, 1992. (1992) MR1191395
  5. 10.2140/pjm.1984.114.345, Pacific J. Math. 114 (1984), 345–366. (1984) Zbl0514.46028MR0757506DOI10.2140/pjm.1984.114.345
  6. 10.1215/ijm/1255986628, Illinois J. Math. 39 (1995), 39–67. (1995) Zbl0810.28006MR1299648DOI10.1215/ijm/1255986628
  7. 10.1016/0047-259X(79)90076-9, J. Multivariate Anal. 9 (1979), 173–178. (1979) Zbl0407.60043MR0530649DOI10.1016/0047-259X(79)90076-9
  8. 10.1215/ijm/1255988170, Illinois J. Math. 34 (1990), 557–567. (1990) Zbl0685.28003MR1053562DOI10.1215/ijm/1255988170
  9. Convergence of Banach-space-valued martingale-like sequences of Pettis-integrable functions, Bull. Polish Acad. Sci. Math. 45 (1997), 233–245. (1997) Zbl0892.60009MR1477541
  10. 10.1016/j.jmaa.2003.12.029, J. Math. Anal. Appl. 293/1 (2004), 71–78. (2004) Zbl1087.47023MR2052532DOI10.1016/j.jmaa.2003.12.029
  11. Stochastic processes of vector valued Pettis and McShane integrable functions, Folia Mathematica 11 (2005). (2005) Zbl1125.60040MR2282634
  12. 10.1007/BFb0088234, Lect. Notes Math., Springer 794 (1980), 324–339. (1980) Zbl0433.28010MR0577981DOI10.1007/BFb0088234
  13. Topics in the theory of Pettis integration, Rend. Istit. Mat. Univ. Trieste 23 (1991), 177–262. (1991) Zbl0798.46042MR1248654
  14. 10.1016/j.jmaa.2005.05.001, J. Math. Anal. Appl. 316 (2006), 579–600. (2006) MR2207332DOI10.1016/j.jmaa.2005.05.001
  15. 10.36045/bbms/1105737762, Bull. Belg. Math. Soc. 4 (1997), 589–599. (1997) MR1600292DOI10.36045/bbms/1105737762
  16. Pettis Integral and Measure Theory, vol. 51, Memoirs A.M.S., 1984. (1984) Zbl0582.46049MR0756174
  17. 10.1090/S0002-9947-1972-0293708-X, Trans. Amer. Math. Soc. 167 (1972), 369–378. (1972) Zbl0249.60025MR0293708DOI10.1090/S0002-9947-1972-0293708-X

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.