Maple tools for the Kurzweil integral

Peter Adams; Rudolf Výborný

Mathematica Bohemica (2006)

  • Volume: 131, Issue: 4, page 337-346
  • ISSN: 0862-7959

Abstract

top
Riemann sums based on δ -fine partitions are illustrated with a Maple procedure.

How to cite

top

Adams, Peter, and Výborný, Rudolf. "Maple tools for the Kurzweil integral." Mathematica Bohemica 131.4 (2006): 337-346. <http://eudml.org/doc/249896>.

@article{Adams2006,
abstract = {Riemann sums based on $\delta $-fine partitions are illustrated with a Maple procedure.},
author = {Adams, Peter, Výborný, Rudolf},
journal = {Mathematica Bohemica},
keywords = {Kurzweil’s integral; fine partition; Riemann sum; fine partition; Riemann sum},
language = {eng},
number = {4},
pages = {337-346},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Maple tools for the Kurzweil integral},
url = {http://eudml.org/doc/249896},
volume = {131},
year = {2006},
}

TY - JOUR
AU - Adams, Peter
AU - Výborný, Rudolf
TI - Maple tools for the Kurzweil integral
JO - Mathematica Bohemica
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 131
IS - 4
SP - 337
EP - 346
AB - Riemann sums based on $\delta $-fine partitions are illustrated with a Maple procedure.
LA - eng
KW - Kurzweil’s integral; fine partition; Riemann sum; fine partition; Riemann sum
UR - http://eudml.org/doc/249896
ER -

References

top
  1. Introduction to Mathematics with Maple, World Scientific, Singapore, 2004. (2004) 
  2. A Modern Theory of Integration, AMS, Graduate Studies in Mathematics, vol. 32, Providence, Rhode Island, 2001. (2001) MR1817647
  3. Introduction to Real Analysis, John Wiley & Sons, New York, 2000. (2000) MR1135107
  4. Introduction to Real Analysis, Wiley, New York, 1988. (1988) MR1042294
  5. The Integrals of Lebesgue, Denjoy, Perron, and Henstock, AMS, Graduate Studies in Mathematics, vol. 4, Providence, Rhode Island, 1991. (1991) 
  6. Definitions of Riemann type of the variational integrals, Proc. London Math. Soc. 11 (1961), 401–418. (1961) Zbl0099.27402MR0132147
  7. Theory of Integration, Butterworths, London, 1963. (1963) Zbl0154.05001MR0158047
  8. Linear Analysis, Butterworths, London, 1967. (1967) Zbl0172.39001MR0419707
  9. A Riemann integral of Lebesgue power, Canad. J. Math. 20 (1968), 79–87. (1968) MR0219675
  10. Lectures on the Theory of Integration, World Scientific, Singapore, 1988. (1988) Zbl0668.28001MR0963249
  11. Generalized ordinary differential equations, Czechoslovak Math. J. 7 (1957), 418–446. (1957) Zbl0090.30002MR0111875
  12. Nichtabsolut konvergente Integrale, Teubner, Leipzig, 1980. (1980) Zbl0441.28001MR0597703
  13. The Integral: An easy approach after Kurzweil and Henstock, Cambridge University Press, Cambridge, UK, 2000. (2000) MR1756319
  14. Lanzhou Lectures on Henstock Integration, W.A. Benjamin, Inc, New York, Amsterdam, 1967. (1967) 
  15. Introduction à l’Analyse, 3rd edition, Cabay, Louvain-la-Neuve, 1983. (1983) 
  16. The Generalized Riemann Integral, Carus Mathematical Monographs, vol. 20, Mathematical Association of America, Washington D.C., 1980. (1980) MR0588510
  17. A General Theory of Integration in Function Spaces, Longmans, Harlow, 1987. (1987) Zbl0623.28008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.