Strong singularities in mixed boundary value problems
Mathematica Bohemica (2006)
- Volume: 131, Issue: 4, page 393-409
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topRachůnková, Irena. "Strong singularities in mixed boundary value problems." Mathematica Bohemica 131.4 (2006): 393-409. <http://eudml.org/doc/249898>.
@article{Rachůnková2006,
abstract = {We study singular boundary value problems with mixed boundary conditions of the form \[ (p(t)u^\{\prime \})^\{\prime \}+ p(t)f(t,u,p(t)u^\{\prime \})=0, \quad \lim \_\{t\rightarrow 0+\}p(t)u^\{\prime \}(t)=0, \quad u(T)=0, \]
where $[0,T]\subset \{\mathbb \{R\}\}.$ We assume that $\{\mathbb \{R\}\}^2,$$f$ satisfies the Carathéodory conditions on $(0,T)\times $$p\in C[0,T]$ and $\{1/p\}$ need not be integrable on $[0,T].$ Here $f$ can have time singularities at $t=0$ and/or $t=T$ and a space singularity at $x=0$. Moreover, $f$ can change its sign. Provided $f$ is nonnegative it can have even a space singularity at $y=0.$ We present conditions for the existence of solutions positive on $[0,T).$},
author = {Rachůnková, Irena},
journal = {Mathematica Bohemica},
keywords = {singular mixed boundary value problem; positive solution; lower function; upper function; convergence of approximate regular problems; positive solution; lower function; upper function},
language = {eng},
number = {4},
pages = {393-409},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Strong singularities in mixed boundary value problems},
url = {http://eudml.org/doc/249898},
volume = {131},
year = {2006},
}
TY - JOUR
AU - Rachůnková, Irena
TI - Strong singularities in mixed boundary value problems
JO - Mathematica Bohemica
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 131
IS - 4
SP - 393
EP - 409
AB - We study singular boundary value problems with mixed boundary conditions of the form \[ (p(t)u^{\prime })^{\prime }+ p(t)f(t,u,p(t)u^{\prime })=0, \quad \lim _{t\rightarrow 0+}p(t)u^{\prime }(t)=0, \quad u(T)=0, \]
where $[0,T]\subset {\mathbb {R}}.$ We assume that ${\mathbb {R}}^2,$$f$ satisfies the Carathéodory conditions on $(0,T)\times $$p\in C[0,T]$ and ${1/p}$ need not be integrable on $[0,T].$ Here $f$ can have time singularities at $t=0$ and/or $t=T$ and a space singularity at $x=0$. Moreover, $f$ can change its sign. Provided $f$ is nonnegative it can have even a space singularity at $y=0.$ We present conditions for the existence of solutions positive on $[0,T).$
LA - eng
KW - singular mixed boundary value problem; positive solution; lower function; upper function; convergence of approximate regular problems; positive solution; lower function; upper function
UR - http://eudml.org/doc/249898
ER -
References
top- 10.1006/jdeq.1996.0147, J. Differ. Equations 130 (1996), 333–355. (1996) MR1410892DOI10.1006/jdeq.1996.0147
- 10.1006/jdeq.1997.3353, J. Differ. Equations 143 (1998), 60–95. (1998) MR1604959DOI10.1006/jdeq.1997.3353
- 10.1023/A:1025045626822, Acta Math. Hungar. 100 (2003), 245–256. (2003) MR1990185DOI10.1023/A:1025045626822
- 10.1017/S0013091503000105, Proc. Edinb. Math. Soc. 47 (2004), 1–13. (2004) MR2064733DOI10.1017/S0013091503000105
- 10.1016/S0898-1221(03)90239-2, Comp. Math. Appl. 46 (2003), 1827–1837. (2003) MR2018768DOI10.1016/S0898-1221(03)90239-2
- 10.1137/0522030, SIAM J. Math. Anal. 22 (1991), 463–479. (1991) Zbl0719.34038MR1084968DOI10.1137/0522030
- 10.1006/jdeq.1995.1022, J. Differ. Equations 115 (1995), 441–457. (1995) MR1310940DOI10.1006/jdeq.1995.1022
- 10.1016/S0895-7177(00)00160-6, Math. Comp. Modelling 32 (2000), 631–641. (2000) MR1791171DOI10.1016/S0895-7177(00)00160-6
- 10.1512/iumj.1981.30.30012, Indiana Univ. Math. J. 30 (1981), 141–157. (1981) MR0600039DOI10.1512/iumj.1981.30.30012
- 10.1090/qam/1012280, Quart. Appl. Math. 47 (1989), 571–581. (1989) Zbl0683.73022MR1012280DOI10.1090/qam/1012280
- 10.1016/0022-0396(89)90113-7, J. Differ. Equations 79 (1989), 62–78. (1989) MR0997609DOI10.1016/0022-0396(89)90113-7
- Symmetry of positive solutions of nonlinear elliptic equations in , Adv. Math. Suppl. Studies 7A (1981), 369–402. (1981) MR0634248
- 10.1090/qam/1466147, Quart. Appl. Math. 55 (1997), 537–550. (1997) Zbl0885.73027MR1466147DOI10.1090/qam/1466147
- Singular and nonsingular boundary value problems with sign changing nonlinearities, J. Inequal. Appl. 5 (2000), 621–637. (2000) MR1812574
- 10.1016/S0362-546X(98)00025-X, Nonlin. Anal. 36 (1999), 481–494. (1999) MR1675264DOI10.1016/S0362-546X(98)00025-X
- On some singular boundary value problems for ordinary differential equations, Tbilis. Univ. Press, Tbilisi, 1975. (Russian) (1975) MR0499402
- Singular boundary value problems for second order ordinary differential equations, Itogi Nauki Tekh., Ser. Sovrm. Probl. Mat., Viniti 30 (1987), 105–201. (Russian) (1987) MR0925830
- Theory of Singular Boundary Value Problems, World Scientific, Singapore, 1994. (1994) MR1286741
- Singular mixed boundary value problem, (to appear). (to appear) MR2225980
- Superlinear mixed BVP with time and space singularities, Submitted.
- 10.1006/jmaa.1997.5516, J. Math. Anal. Appl. 212 (1997), 443–451. (1997) Zbl0883.34021MR1464889DOI10.1006/jmaa.1997.5516
- 10.1006/jdeq.1994.1112, J. Differ. Equations 113 (1994), 1–16. (1994) Zbl0810.34019MR1296159DOI10.1006/jdeq.1994.1112
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.