Periodic singular problem with quasilinear differential operator
Mathematica Bohemica (2006)
- Volume: 131, Issue: 3, page 321-336
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topRachůnková, Irena, and Tvrdý, Milan. "Periodic singular problem with quasilinear differential operator." Mathematica Bohemica 131.3 (2006): 321-336. <http://eudml.org/doc/249905>.
@article{Rachůnková2006,
abstract = {We study the singular periodic boundary value problem of the form \[ \left(\phi (u^\{\prime \})\right)^\{\prime \}+h(u)u^\{\prime \}=g(u)+e(t),\quad u(0)=u(T),\quad u^\{\prime \}(0)=u^\{\prime \}(T), \]
where $\phi \:\mathbb \{R\}\rightarrow \mathbb \{R\}$ is an increasing and odd homeomorphism such that $\phi (\mathbb \{R\})=\mathbb \{R\},$$h\in C[0,\infty ),$$e\in L_1J$ and $g\in C(0,\infty )$ can have a space singularity at $x=0,$ i.e. $\limsup _\{x\rightarrow 0+\}|g(x)|=\infty $ may hold. We prove new existence results both for the case of an attractive singularity, when $\liminf _\{x\rightarrow 0+\}g(x)=-\infty ,$ and for the case of a strong repulsive singularity, when $\lim _\{x\rightarrow 0+\}\int _x^1g(\xi )\hspace\{0.56905pt\}\text\{d\}\xi =\infty .$ In the latter case we assume that $\phi (y)=\phi _p(y)=|y|^\{p-2\}y,$$p>1,$ is the well-known $p$-Laplacian. Our results extend and complete those obtained recently by Jebelean and Mawhin and by Liu Bing.},
author = {Rachůnková, Irena, Tvrdý, Milan},
journal = {Mathematica Bohemica},
keywords = {singular periodic boundary value problem; positive solution; $\phi $-Laplacian; $p$-Laplacian; attractive singularity; repulsive singularity; strong singularity; lower function; upper function; singular periodic boundary value problem; positive solution; -Laplacian},
language = {eng},
number = {3},
pages = {321-336},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Periodic singular problem with quasilinear differential operator},
url = {http://eudml.org/doc/249905},
volume = {131},
year = {2006},
}
TY - JOUR
AU - Rachůnková, Irena
AU - Tvrdý, Milan
TI - Periodic singular problem with quasilinear differential operator
JO - Mathematica Bohemica
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 131
IS - 3
SP - 321
EP - 336
AB - We study the singular periodic boundary value problem of the form \[ \left(\phi (u^{\prime })\right)^{\prime }+h(u)u^{\prime }=g(u)+e(t),\quad u(0)=u(T),\quad u^{\prime }(0)=u^{\prime }(T), \]
where $\phi \:\mathbb {R}\rightarrow \mathbb {R}$ is an increasing and odd homeomorphism such that $\phi (\mathbb {R})=\mathbb {R},$$h\in C[0,\infty ),$$e\in L_1J$ and $g\in C(0,\infty )$ can have a space singularity at $x=0,$ i.e. $\limsup _{x\rightarrow 0+}|g(x)|=\infty $ may hold. We prove new existence results both for the case of an attractive singularity, when $\liminf _{x\rightarrow 0+}g(x)=-\infty ,$ and for the case of a strong repulsive singularity, when $\lim _{x\rightarrow 0+}\int _x^1g(\xi )\hspace{0.56905pt}\text{d}\xi =\infty .$ In the latter case we assume that $\phi (y)=\phi _p(y)=|y|^{p-2}y,$$p>1,$ is the well-known $p$-Laplacian. Our results extend and complete those obtained recently by Jebelean and Mawhin and by Liu Bing.
LA - eng
KW - singular periodic boundary value problem; positive solution; $\phi $-Laplacian; $p$-Laplacian; attractive singularity; repulsive singularity; strong singularity; lower function; upper function; singular periodic boundary value problem; positive solution; -Laplacian
UR - http://eudml.org/doc/249905
ER -
References
top- 10.12775/TMNA.2003.041, Topol. Methods Nonlinear Anal. 22 (2003), 297–317. (2003) MR2036378DOI10.12775/TMNA.2003.041
- 10.3934/dcds.2002.8.907, Discrete Contin. Dyn. Syst. 8 (2002), 907–930. (2002) MR1920651DOI10.3934/dcds.2002.8.907
- Existence result for the problem with periodic and Neumann boundary conditions, Nonlinear Anal., Theory Methods Appl. 30 (1997), 1733–1742. (1997) MR1490088
- -periodic solutions for some second order differential equations with singularities, Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), 231–243. (1992) MR1159183
- 10.1016/0362-546X(92)90048-J, Nonlinear Anal., Theory Methods Appl. 18 (1992), 79–92. (1992) MR1138643DOI10.1016/0362-546X(92)90048-J
- Systèmes différentiels non linéaires ayant des solutions périodiques, Acad. R. Belgique, Bull. Cl. Sci. 49 (1963), 11–32. (1963)
- Solvability and Bifurcation of Nonlinear Equations, Research Notes in Math. Vol. 264, Pitman, Boston, 1992. (1992) MR1175397
- 10.5802/aif.170, Ann. Inst. Fourier (Grenoble) 14 (1964), 195–204. (1964) MR0166444DOI10.5802/aif.170
- Periodic solution of scalar second order differential equations with a singularity, Acad R. Belgique, Mém. Cl. Sci. 4 (1993), 1–39. (1993) MR1259048
- Détermination approachée et stabilité locale de la solution périodique d’une equation différentielle non linéaire, Mém. Public. Soc. Sci. Arts Letters Hainaut 76 (1962), 3–13. (1962) MR0149009
- 10.1007/BF03322042, Result. Math. 34 (1998), 108–119. (1998) MR1635588DOI10.1007/BF03322042
- Periodic solutions of some Liénard equations with singularities, Proc. Amer. Math. Soc. 109 (1990), 1035–1044. (1990) MR1009991
- Sur l’existence d’une solution périodique de l’equation différentielle non linéaire , Acad. R. Belgique, Bull. Cl. Sci. 48 (1962), 494–504. (1962) MR0142838
- Periodic solutions of singular nonlinear perturbations of the ordinary -Laplacian, Adv. Nonlinear Stud. 2 (2002), 299–312. (2002) MR1918967
- Periodic solutions of forced dissipative -Liénard equations with singularities, Vietnam J. Math. 32 (2004), 97–103. (2004) MR2120634
- 10.4064/ap-65-3-265-270, Ann. Polon. Math. 65 (1997), 265–270. (1997) MR1441181DOI10.4064/ap-65-3-265-270
- 10.1090/S0002-9939-1987-0866438-7, Proc. Amer. Math. Soc. 99 (1987), 109–114. (1987) MR0866438DOI10.1090/S0002-9939-1987-0866438-7
- 10.4064/ap79-2-2, Ann. Pol. Math. 79 (2002), 109–120. (2002) Zbl1024.34037MR1957886DOI10.4064/ap79-2-2
- Topological degree and boundary value problems for nonlinear differential equations, Topological Methods for Ordinary Differential Equations, M. Furi, P. Zecca (eds.), Lecture Notes in Mathematics, Vol. 1537, Springer, Berlin, 1993, pp. 74–142. (1993) Zbl0798.34025MR1226930
- 10.1006/jdeq.1998.3425, J. Differential Equations 145 (1998), 367–393. (1998) MR1621038DOI10.1006/jdeq.1998.3425
- Periodic Solutions of Systems with -Laplacian-like Operators, Nonlinear Analysis and its Applications to Differential Equations, M. R. Grossinho, M. Ramos, C. Rebelo, L. Sanchez (eds.), Progress in Nonlinear Differerential Equations and their Applications, Vol. 43, Birkhäuser, Boston, 2001, pp. 37–63. (2001) Zbl1016.34042MR1800613
- Necessary and sufficient conditions for the existence of periodic solutions of second order ordinary differential equations with singular nonlinearities, Differ. Integral Equ. 8 (1995), 1843–1858. (1995) Zbl0831.34048MR1347985
- 10.1016/j.na.2004.09.017, Nonlinear Anal., Theory Methods Appl. 63 (2005), e257–e266. (2005) DOI10.1016/j.na.2004.09.017
- Periodic problems with -Laplacian involving non-ordered lower and upper functions, Fixed Point Theory 6 (2005), 99–112. (2005) MR2133109
- 10.1006/jdeq.2000.3995, J. Differential Equations 176 (2001), 445–469. (2001) MR1866282DOI10.1006/jdeq.2000.3995
- Resonance and multiplicity in periodic BVPs with singularity, Math. Bohem. 128 (2003), 45–70. (2003) MR1973424
- 10.18514/MMN.2000.19, Math. Notes (Miskolc) 1 (2000), 63–81. (2000) MR1793262DOI10.18514/MMN.2000.19
- 10.1016/S0022-0396(02)00152-3, J. Differential Equations 190 (2003), 643–662. (2003) Zbl1032.34040MR1970045DOI10.1016/S0022-0396(02)00152-3
- 10.1016/S0022-247X(03)00383-4, J. Math. Anal. Appl. 285 (2003), 141–154. (2003) Zbl1037.34037MR2000145DOI10.1016/S0022-247X(03)00383-4
- 10.1006/jmaa.1996.0378, J. Math. Anal. Appl. 203 (1996), 254–269. (1996) Zbl0863.34039MR1412492DOI10.1006/jmaa.1996.0378
- 10.1016/S0362-546X(96)00037-5, Nonlinear Anal., Theory Methods Appl. 29 (1997), 41–51. (1997) Zbl0876.35039MR1447568DOI10.1016/S0362-546X(96)00037-5
- A relationship between the periodic and the Dirichlet BVPs of singular differential equations, Proc. Roy. Soc. Edinburgh Sect. A 128A (1998), 1099–1114. (1998) Zbl0918.34025MR1642144
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.