The Henstock-Kurzweil approach to Young integrals with integrators in BV φ

Boonpogkrong Varayu; Tuan-Seng Chew

Mathematica Bohemica (2006)

  • Volume: 131, Issue: 3, page 233-260
  • ISSN: 0862-7959

Abstract

top
In 1938, L. C. Young proved that the Moore-Pollard-Stieltjes integral a b f d g exists if f B V φ [ a , b ] , g B V ψ [ a , b ] and n = 1 φ - 1 ( 1 / n ) ψ - 1 ( 1 / n ) < . In this note we use the Henstock-Kurzweil approach to handle the above integral defined by Young.

How to cite

top

Varayu, Boonpogkrong, and Chew, Tuan-Seng. "The Henstock-Kurzweil approach to Young integrals with integrators in ${\rm BV}_\phi $." Mathematica Bohemica 131.3 (2006): 233-260. <http://eudml.org/doc/249918>.

@article{Varayu2006,
abstract = {In 1938, L. C. Young proved that the Moore-Pollard-Stieltjes integral $\int _a^bf\mathrm \{d\}g$ exists if $f\in \mathop \{\{\mathrm \{B\}V\}\}_\phi [a,b]$, $g\in \mathop \{\{\mathrm \{B\}V\}\}_\psi [a,b]$ and $\sum _\{n=1\}^\infty \phi ^\{-1\}(\{1\}/\{n\})\psi ^\{-1\} (\{1\}/\{n\})<\infty $. In this note we use the Henstock-Kurzweil approach to handle the above integral defined by Young.},
author = {Varayu, Boonpogkrong, Chew, Tuan-Seng},
journal = {Mathematica Bohemica},
keywords = {Henstock integral; Stieltjes integral; Young integral; $\phi $-variation; Henstock integral; Stieltjes integral; Young integral; -variation},
language = {eng},
number = {3},
pages = {233-260},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The Henstock-Kurzweil approach to Young integrals with integrators in $\{\rm BV\}_\phi $},
url = {http://eudml.org/doc/249918},
volume = {131},
year = {2006},
}

TY - JOUR
AU - Varayu, Boonpogkrong
AU - Chew, Tuan-Seng
TI - The Henstock-Kurzweil approach to Young integrals with integrators in ${\rm BV}_\phi $
JO - Mathematica Bohemica
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 131
IS - 3
SP - 233
EP - 260
AB - In 1938, L. C. Young proved that the Moore-Pollard-Stieltjes integral $\int _a^bf\mathrm {d}g$ exists if $f\in \mathop {{\mathrm {B}V}}_\phi [a,b]$, $g\in \mathop {{\mathrm {B}V}}_\psi [a,b]$ and $\sum _{n=1}^\infty \phi ^{-1}({1}/{n})\psi ^{-1} ({1}/{n})<\infty $. In this note we use the Henstock-Kurzweil approach to handle the above integral defined by Young.
LA - eng
KW - Henstock integral; Stieltjes integral; Young integral; $\phi $-variation; Henstock integral; Stieltjes integral; Young integral; -variation
UR - http://eudml.org/doc/249918
ER -

References

top
  1. 10.14321/realanalexch.30.1.0193, Real Anal. Exch. 30 (2004/2005), 193–200. (2004/2005) MR2127525DOI10.14321/realanalexch.30.1.0193
  2. Differentiability of Six Operators on Nonsmooth Functions and p -Variation, Springer, Berlin, 1999. (1999) MR1705318
  3. Moore-Smith limits and the Henstock integral, Real Anal. Exchange 24 (1998/1999), 447–455. (1998/1999) MR1691764
  4. The Integral. An Easy Approach after Kurzweil and Henstock, Cambridge University Press, 2000. (2000) MR1756319
  5. 10.4064/sm-45-1-71-109, Stud. Math. 45 (1973), 71–109. (1973) MR0346509DOI10.4064/sm-45-1-71-109
  6. 10.4064/sm-18-1-11-41, Stud. Math. 18 (1959), 11–41. (1959) MR0104771DOI10.4064/sm-18-1-11-41
  7. On fractional integration by parts, Proc. London Math. Soc., II. Ser., 44 (1938), 1–35. (1938) MR1575481
  8. Integration by parts and other theorems for R 3 S -integrals, Real Anal. Exch. 24 (1998/1999), 315–336. (1998/1999) MR1691754
  9. Quadratic Variation, p-Variation and Integration with Applications to Strock Price Modelling, Preprint, 2003. (2003) MR2251444
  10. A note on integration by parts for abstract Perron-Stieltjes integrals, Math. Bohem. 126 (2001), 613–629. (2001) Zbl0980.26005MR1970264
  11. 10.1007/BF02401743, Acta Math. 67 (1936), 251–282. (1936) Zbl0016.10404MR1555421DOI10.1007/BF02401743
  12. 10.1007/BF01448958, Math. Ann. 115 (1938), 581–612. (1938) MR1513204DOI10.1007/BF01448958

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.