The Henstock-Kurzweil approach to Young integrals with integrators in
Boonpogkrong Varayu; Tuan-Seng Chew
Mathematica Bohemica (2006)
- Volume: 131, Issue: 3, page 233-260
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topVarayu, Boonpogkrong, and Chew, Tuan-Seng. "The Henstock-Kurzweil approach to Young integrals with integrators in ${\rm BV}_\phi $." Mathematica Bohemica 131.3 (2006): 233-260. <http://eudml.org/doc/249918>.
@article{Varayu2006,
abstract = {In 1938, L. C. Young proved that the Moore-Pollard-Stieltjes integral $\int _a^bf\mathrm \{d\}g$ exists if $f\in \mathop \{\{\mathrm \{B\}V\}\}_\phi [a,b]$, $g\in \mathop \{\{\mathrm \{B\}V\}\}_\psi [a,b]$ and $\sum _\{n=1\}^\infty \phi ^\{-1\}(\{1\}/\{n\})\psi ^\{-1\} (\{1\}/\{n\})<\infty $. In this note we use the Henstock-Kurzweil approach to handle the above integral defined by Young.},
author = {Varayu, Boonpogkrong, Chew, Tuan-Seng},
journal = {Mathematica Bohemica},
keywords = {Henstock integral; Stieltjes integral; Young integral; $\phi $-variation; Henstock integral; Stieltjes integral; Young integral; -variation},
language = {eng},
number = {3},
pages = {233-260},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The Henstock-Kurzweil approach to Young integrals with integrators in $\{\rm BV\}_\phi $},
url = {http://eudml.org/doc/249918},
volume = {131},
year = {2006},
}
TY - JOUR
AU - Varayu, Boonpogkrong
AU - Chew, Tuan-Seng
TI - The Henstock-Kurzweil approach to Young integrals with integrators in ${\rm BV}_\phi $
JO - Mathematica Bohemica
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 131
IS - 3
SP - 233
EP - 260
AB - In 1938, L. C. Young proved that the Moore-Pollard-Stieltjes integral $\int _a^bf\mathrm {d}g$ exists if $f\in \mathop {{\mathrm {B}V}}_\phi [a,b]$, $g\in \mathop {{\mathrm {B}V}}_\psi [a,b]$ and $\sum _{n=1}^\infty \phi ^{-1}({1}/{n})\psi ^{-1} ({1}/{n})<\infty $. In this note we use the Henstock-Kurzweil approach to handle the above integral defined by Young.
LA - eng
KW - Henstock integral; Stieltjes integral; Young integral; $\phi $-variation; Henstock integral; Stieltjes integral; Young integral; -variation
UR - http://eudml.org/doc/249918
ER -
References
top- 10.14321/realanalexch.30.1.0193, Real Anal. Exch. 30 (2004/2005), 193–200. (2004/2005) MR2127525DOI10.14321/realanalexch.30.1.0193
- Differentiability of Six Operators on Nonsmooth Functions and -Variation, Springer, Berlin, 1999. (1999) MR1705318
- Moore-Smith limits and the Henstock integral, Real Anal. Exchange 24 (1998/1999), 447–455. (1998/1999) MR1691764
- The Integral. An Easy Approach after Kurzweil and Henstock, Cambridge University Press, 2000. (2000) MR1756319
- 10.4064/sm-45-1-71-109, Stud. Math. 45 (1973), 71–109. (1973) MR0346509DOI10.4064/sm-45-1-71-109
- 10.4064/sm-18-1-11-41, Stud. Math. 18 (1959), 11–41. (1959) MR0104771DOI10.4064/sm-18-1-11-41
- On fractional integration by parts, Proc. London Math. Soc., II. Ser., 44 (1938), 1–35. (1938) MR1575481
- Integration by parts and other theorems for -integrals, Real Anal. Exch. 24 (1998/1999), 315–336. (1998/1999) MR1691754
- Quadratic Variation, p-Variation and Integration with Applications to Strock Price Modelling, Preprint, 2003. (2003) MR2251444
- A note on integration by parts for abstract Perron-Stieltjes integrals, Math. Bohem. 126 (2001), 613–629. (2001) Zbl0980.26005MR1970264
- 10.1007/BF02401743, Acta Math. 67 (1936), 251–282. (1936) Zbl0016.10404MR1555421DOI10.1007/BF02401743
- 10.1007/BF01448958, Math. Ann. 115 (1938), 581–612. (1938) MR1513204DOI10.1007/BF01448958
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.