Coordinate description of analytic relations
Mathematica Bohemica (2006)
- Volume: 131, Issue: 2, page 197-210
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topNeuman, František. "Coordinate description of analytic relations." Mathematica Bohemica 131.2 (2006): 197-210. <http://eudml.org/doc/249920>.
@article{Neuman2006,
abstract = {In this paper we present an algebraic approach that describes the structure of analytic objects in a unified manner in the case when their transformations satisfy certain conditions of categorical character. We demonstrate this approach on examples of functional, differential, and functional differential equations.},
author = {Neuman, František},
journal = {Mathematica Bohemica},
keywords = {canonical form; Brandt groupoid; Ehresmann groupoid; transformation; differential equation; Abel functional equation; functional differential equation; canonical form; Brandt groupoid; Ehresmann groupoid; transformation; differential equation; Abel functional equation; functional differential equation},
language = {eng},
number = {2},
pages = {197-210},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Coordinate description of analytic relations},
url = {http://eudml.org/doc/249920},
volume = {131},
year = {2006},
}
TY - JOUR
AU - Neuman, František
TI - Coordinate description of analytic relations
JO - Mathematica Bohemica
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 131
IS - 2
SP - 197
EP - 210
AB - In this paper we present an algebraic approach that describes the structure of analytic objects in a unified manner in the case when their transformations satisfy certain conditions of categorical character. We demonstrate this approach on examples of functional, differential, and functional differential equations.
LA - eng
KW - canonical form; Brandt groupoid; Ehresmann groupoid; transformation; differential equation; Abel functional equation; functional differential equation; canonical form; Brandt groupoid; Ehresmann groupoid; transformation; differential equation; Abel functional equation; functional differential equation
UR - http://eudml.org/doc/249920
ER -
References
top- O rozložení nulových bodů řešení lineární diferenciální rovnice a jejich derivací, Acta F. R. N. Univ. Comenian 5 (1961), 465–474. (1961)
- Linear Differential Transformations of the Second Order, The English Univ. Press, London, 1971. (1971) MR0463539
- 10.4064/ap-13-2-133-138, Ann. Polon. Math. 13 (1963), 133–138. (1963) MR0153998DOI10.4064/ap-13-2-133-138
- Invariants, covariants and quotient-derivatives associated with linear differential equations, Philos. Trans. Roy. Soc. London Ser. A 179 (1899), 377–489. (1899)
- Theorie der Kategorien, VEB, Berlin, 1966. (1966) MR0213411
- Functional Equations in a Single Variable, PWN, 1968. (1968) Zbl0196.16403MR0228862
- Iterative Functional Equations, Cambridge Univ. Press, Cambridge, 1989. (1989) MR1067720
- De generali quadam aequatione differentiali tertii ordinis (Progr. Evang. Königl. Stadtgymnasium Liegnitz 1834), J. Reine Angew. Math. (reprinted) 100 (1887), 1–10. (1887)
- Sur les équations differérentielles linéaires du troisième ordre, C. R. Acad. Sci. Paris 88 (1879), 116–118. (1879)
- Geometrical approach to linear differential equations of the -th order, Rend. Mat. 5 (1972), 579–602. (1972) Zbl0257.34029MR0324141
- Simultaneous solutions of a system of Abel equations and differential equations with several deviations, Czechoslovak Math. J. 32 (1982), 488–494. (1982) Zbl0524.34070MR0669790
- Criterion of global equivalence of linear differential equations, Proc. Roy. Soc. Edinburgh 97 A (1984), 217–221. (1984) Zbl0552.34009MR0751194
- On Halphen and Laguerre-Forsyth canonical forms for linear differential equations, Archivum Math. (Brno) 26 (1990), 147–154. (1990) MR1188274
- Transformations and canonical forms of functional-differential equations, Proc. Roy. Soc. Edinburgh 115 A (1990), 349–357. (1990) MR1069527
- On a canonical parametrization of continuous functions, Opuscula Mathematica (Kraków) 6 (1990), 185–191. (1990) Zbl0779.39002MR1120254
- Global Properties of Linear Ordinary Differential Equations, Mathematics and Its Applications (East European Series) 52, Kluwer Acad. Publ., Dordrecht, 1991. (1991) Zbl0784.34009MR1192133
- 10.1007/BF03323059, Results in Mathematics 26 (1994), 354–359. (1994) Zbl0829.34054MR1300618DOI10.1007/BF03323059
- 10.1016/S0362-546X(00)85029-4, Nonlinear Anal. 40 (2000), 505–511. (2000) Zbl0957.34008MR1768906DOI10.1016/S0362-546X(00)85029-4
- 10.1016/S0893-9659(04)90014-6, Applied Math. Letters 17 (2004), 71–76. (2004) Zbl1054.34018MR2030653DOI10.1016/S0893-9659(04)90014-6
- Smooth and discrete systems—algebraic, analytic, and geometrical representations, Adv. Difference Equ. 2 (2004), 111–120. (2004) Zbl1077.34008MR2064086
- 10.1007/s00010-005-2788-4, Aequationes Math. 70 (2005), 77–87. (2005) Zbl1086.34006MR2167986DOI10.1007/s00010-005-2788-4
- Projective Differential Geometry of Curves and Ruled Surfaces, Teubner, Leipzig, 1906. (1906)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.