Coordinate description of analytic relations

František Neuman

Mathematica Bohemica (2006)

  • Volume: 131, Issue: 2, page 197-210
  • ISSN: 0862-7959

Abstract

top
In this paper we present an algebraic approach that describes the structure of analytic objects in a unified manner in the case when their transformations satisfy certain conditions of categorical character. We demonstrate this approach on examples of functional, differential, and functional differential equations.

How to cite

top

Neuman, František. "Coordinate description of analytic relations." Mathematica Bohemica 131.2 (2006): 197-210. <http://eudml.org/doc/249920>.

@article{Neuman2006,
abstract = {In this paper we present an algebraic approach that describes the structure of analytic objects in a unified manner in the case when their transformations satisfy certain conditions of categorical character. We demonstrate this approach on examples of functional, differential, and functional differential equations.},
author = {Neuman, František},
journal = {Mathematica Bohemica},
keywords = {canonical form; Brandt groupoid; Ehresmann groupoid; transformation; differential equation; Abel functional equation; functional differential equation; canonical form; Brandt groupoid; Ehresmann groupoid; transformation; differential equation; Abel functional equation; functional differential equation},
language = {eng},
number = {2},
pages = {197-210},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Coordinate description of analytic relations},
url = {http://eudml.org/doc/249920},
volume = {131},
year = {2006},
}

TY - JOUR
AU - Neuman, František
TI - Coordinate description of analytic relations
JO - Mathematica Bohemica
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 131
IS - 2
SP - 197
EP - 210
AB - In this paper we present an algebraic approach that describes the structure of analytic objects in a unified manner in the case when their transformations satisfy certain conditions of categorical character. We demonstrate this approach on examples of functional, differential, and functional differential equations.
LA - eng
KW - canonical form; Brandt groupoid; Ehresmann groupoid; transformation; differential equation; Abel functional equation; functional differential equation; canonical form; Brandt groupoid; Ehresmann groupoid; transformation; differential equation; Abel functional equation; functional differential equation
UR - http://eudml.org/doc/249920
ER -

References

top
  1. O rozložení nulových bodů řešení lineární diferenciální rovnice y ' ' = Q ( t ) y a jejich derivací, Acta F. R. N. Univ. Comenian 5 (1961), 465–474. (1961) 
  2. Linear Differential Transformations of the Second Order, The English Univ. Press, London, 1971. (1971) MR0463539
  3. 10.4064/ap-13-2-133-138, Ann. Polon. Math. 13 (1963), 133–138. (1963) MR0153998DOI10.4064/ap-13-2-133-138
  4. Invariants, covariants and quotient-derivatives associated with linear differential equations, Philos. Trans. Roy. Soc. London Ser. A 179 (1899), 377–489. (1899) 
  5. Theorie der Kategorien, VEB, Berlin, 1966. (1966) MR0213411
  6. Functional Equations in a Single Variable, PWN, 1968. (1968) Zbl0196.16403MR0228862
  7. Iterative Functional Equations, Cambridge Univ. Press, Cambridge, 1989. (1989) MR1067720
  8. De generali quadam aequatione differentiali tertii ordinis (Progr. Evang. Königl. Stadtgymnasium Liegnitz 1834), J. Reine Angew. Math. (reprinted) 100 (1887), 1–10. (1887) 
  9. Sur les équations differérentielles linéaires du troisième ordre, C. R. Acad. Sci. Paris 88 (1879), 116–118. (1879) 
  10. Geometrical approach to linear differential equations of the n -th order, Rend. Mat. 5 (1972), 579–602. (1972) Zbl0257.34029MR0324141
  11. Simultaneous solutions of a system of Abel equations and differential equations with several deviations, Czechoslovak Math. J. 32 (1982), 488–494. (1982) Zbl0524.34070MR0669790
  12. Criterion of global equivalence of linear differential equations, Proc. Roy. Soc. Edinburgh 97 A (1984), 217–221. (1984) Zbl0552.34009MR0751194
  13. On Halphen and Laguerre-Forsyth canonical forms for linear differential equations, Archivum Math. (Brno) 26 (1990), 147–154. (1990) MR1188274
  14. Transformations and canonical forms of functional-differential equations, Proc. Roy. Soc. Edinburgh 115 A (1990), 349–357. (1990) MR1069527
  15. On a canonical parametrization of continuous functions, Opuscula Mathematica (Kraków) 6 (1990), 185–191. (1990) Zbl0779.39002MR1120254
  16. Global Properties of Linear Ordinary Differential Equations, Mathematics and Its Applications (East European Series) 52, Kluwer Acad. Publ., Dordrecht, 1991. (1991) Zbl0784.34009MR1192133
  17. 10.1007/BF03323059, Results in Mathematics 26 (1994), 354–359. (1994) Zbl0829.34054MR1300618DOI10.1007/BF03323059
  18. 10.1016/S0362-546X(00)85029-4, Nonlinear Anal. 40 (2000), 505–511. (2000) Zbl0957.34008MR1768906DOI10.1016/S0362-546X(00)85029-4
  19. 10.1016/S0893-9659(04)90014-6, Applied Math. Letters 17 (2004), 71–76. (2004) Zbl1054.34018MR2030653DOI10.1016/S0893-9659(04)90014-6
  20. Smooth and discrete systems—algebraic, analytic, and geometrical representations, Adv. Difference Equ. 2 (2004), 111–120. (2004) Zbl1077.34008MR2064086
  21. 10.1007/s00010-005-2788-4, Aequationes Math. 70 (2005), 77–87. (2005) Zbl1086.34006MR2167986DOI10.1007/s00010-005-2788-4
  22. Projective Differential Geometry of Curves and Ruled Surfaces, Teubner, Leipzig, 1906. (1906) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.