Diophantine inequalities with power sums
- [1] Institut für Mathematik A Technische Universität Graz Steyrergasse 30 A-8010 Graz, Austria
Journal de Théorie des Nombres de Bordeaux (2007)
- Volume: 19, Issue: 2, page 547-560
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- A. Baker, A sharpening of the bounds for linear forms in logarithms II. Acta Arithmetica 24 (1973), 33–36. Zbl0261.10025MR376549
- P. Corvaja and U. Zannier, Diophantine Equations with Power Sums and Universal Hilbert Sets. Indag. Math., N.S. (3) 9 (1998), 317–332. Zbl0923.11103MR1692189
- P. Corvaja and U. Zannier, Some new applications of the Subspace Theorem. Compositio Math. 131 (2002), 319–340. Zbl1010.11038MR1905026
- R. Dvornicich and U. Zannier, On polynomials taking small values at integral arguments. Acta Arithmetica (2) 42 (1983), 189–196. Zbl0515.10049MR719248
- M. Eichler, Introduction to the theory of algebraic numbers and functions. Academic press, New York and London. (1966). Zbl0152.19502MR209258
- J.-H Evertse, An improvement of the quantitative subspace theorem. Compositio Math. (3) 101 (1996), 225–311. Zbl0856.11030MR1394517
- C. Fuchs, Exponential-Polynomial Equations and Linear Recurrences. PhD. thesis. Technische Universität Graz (2002).
- K. Iwasawa, Algebraic functions. Translations of Mathematical Monographs Vol. 118. American Mathematical Society, Providence, Rhode Island (1993). Zbl0790.14017MR1213914
- P. Kiss, Differences of the terms of linear recurrences. Studia Sci. Math. Hungar. (1-4) 20 (1985), 285–293. Zbl0628.10008MR886031
- A. Pethö, Perfect powers in second order linear recurrences. J. Number Theory 15 (1982), 5–13. Zbl0488.10009MR666345
- W. M. Schmidt, Diophantine Approximations and Diophantine Equations. Lecture Notes in Math. vol. 1467. Springer-Verlag (1991). Zbl0754.11020MR1176315
- W. M. Schmidt, Diophantine Approximation. Lecture Notes in Math. vol. 785. Springer-Verlag. (1980). Zbl0421.10019MR568710
- A. Scremin, Tesi di Laurea “Equazioni e Disequazioni Diofantee Esponenziali”. Università degli Studi di Udine (2001).
- T. N. Shorey and C. L. Stewart, Pure powers in Recurrence Sequences and Some Related Diophantine Equations. J. Number Theory 27 (1987), 324–352. Zbl0624.10009MR915504