Diophantine inequalities with power sums

Amedeo Scremin[1]

  • [1] Institut für Mathematik A Technische Universität Graz Steyrergasse 30 A-8010 Graz, Austria

Journal de Théorie des Nombres de Bordeaux (2007)

  • Volume: 19, Issue: 2, page 547-560
  • ISSN: 1246-7405

Abstract

top
The ring of power sums is formed by complex functions on of the form α ( n ) = b 1 c 1 n + b 2 c 2 n + ... + b h c h n , for some b i ¯ and c i . Let F ( x , y ) ¯ [ x , y ] be absolutely irreducible, monic and of degree at least 2 in y . We consider Diophantine inequalities of the form | F ( α ( n ) , y ) | < | F y ( α ( n ) , y ) | · | α ( n ) | - ε and show that all the solutions ( n , y ) × have y parametrized by some power sums in a finite set. As a consequence, we prove that the equation F ( α ( n ) , y ) = f ( n ) , with f [ x ] not constant, F monic in y and α not constant, has only finitely many solutions.

How to cite

top

Scremin, Amedeo. "Diophantine inequalities with power sums." Journal de Théorie des Nombres de Bordeaux 19.2 (2007): 547-560. <http://eudml.org/doc/249949>.

@article{Scremin2007,
abstract = {The ring of power sums is formed by complex functions on $\mathbb\{N\}$ of the form\[\alpha (n) = b\_1 c\_1^n + b\_2 c\_2^n + \ldots + b\_h c\_h^n,\]for some $b_\{i\}\in \overline\{\mathbb\{Q\}\}$ and $c_i \in \mathbb\{Z\}$. Let $F(x,y)\!\in \!\overline\{\mathbb\{Q\}\}[x,y]$ be absolutely irreducible, monic and of degree at least $2$ in $y$. We consider Diophantine inequalities of the form\[|F(\alpha (n),y)| &lt; \Big | \frac\{\partial F\}\{\partial y\} (\alpha (n),y)\Big | \cdot |\alpha (n)|^\{-\varepsilon \}\]and show that all the solutions $(n,y)\in \mathbb\{N\}\times \mathbb\{Z\}$ have $y$ parametrized by some power sums in a finite set. As a consequence, we prove that the equation\[F(\alpha (n),y)=f(n),\]with $f\in \mathbb\{Z\}[x]$ not constant, $F$ monic in $y$ and $\alpha $ not constant, has only finitely many solutions.},
affiliation = {Institut für Mathematik A Technische Universität Graz Steyrergasse 30 A-8010 Graz, Austria},
author = {Scremin, Amedeo},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Diophantine inequalities; power sums},
language = {eng},
number = {2},
pages = {547-560},
publisher = {Université Bordeaux 1},
title = {Diophantine inequalities with power sums},
url = {http://eudml.org/doc/249949},
volume = {19},
year = {2007},
}

TY - JOUR
AU - Scremin, Amedeo
TI - Diophantine inequalities with power sums
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2007
PB - Université Bordeaux 1
VL - 19
IS - 2
SP - 547
EP - 560
AB - The ring of power sums is formed by complex functions on $\mathbb{N}$ of the form\[\alpha (n) = b_1 c_1^n + b_2 c_2^n + \ldots + b_h c_h^n,\]for some $b_{i}\in \overline{\mathbb{Q}}$ and $c_i \in \mathbb{Z}$. Let $F(x,y)\!\in \!\overline{\mathbb{Q}}[x,y]$ be absolutely irreducible, monic and of degree at least $2$ in $y$. We consider Diophantine inequalities of the form\[|F(\alpha (n),y)| &lt; \Big | \frac{\partial F}{\partial y} (\alpha (n),y)\Big | \cdot |\alpha (n)|^{-\varepsilon }\]and show that all the solutions $(n,y)\in \mathbb{N}\times \mathbb{Z}$ have $y$ parametrized by some power sums in a finite set. As a consequence, we prove that the equation\[F(\alpha (n),y)=f(n),\]with $f\in \mathbb{Z}[x]$ not constant, $F$ monic in $y$ and $\alpha $ not constant, has only finitely many solutions.
LA - eng
KW - Diophantine inequalities; power sums
UR - http://eudml.org/doc/249949
ER -

References

top
  1. A. Baker, A sharpening of the bounds for linear forms in logarithms II. Acta Arithmetica 24 (1973), 33–36. Zbl0261.10025MR376549
  2. P. Corvaja and U. Zannier, Diophantine Equations with Power Sums and Universal Hilbert Sets. Indag. Math., N.S. (3) 9 (1998), 317–332. Zbl0923.11103MR1692189
  3. P. Corvaja and U. Zannier, Some new applications of the Subspace Theorem. Compositio Math. 131 (2002), 319–340. Zbl1010.11038MR1905026
  4. R. Dvornicich and U. Zannier, On polynomials taking small values at integral arguments. Acta Arithmetica (2) 42 (1983), 189–196. Zbl0515.10049MR719248
  5. M. Eichler, Introduction to the theory of algebraic numbers and functions. Academic press, New York and London. (1966). Zbl0152.19502MR209258
  6. J.-H Evertse, An improvement of the quantitative subspace theorem. Compositio Math. (3) 101 (1996), 225–311. Zbl0856.11030MR1394517
  7. C. Fuchs, Exponential-Polynomial Equations and Linear Recurrences. PhD. thesis. Technische Universität Graz (2002). 
  8. K. Iwasawa, Algebraic functions. Translations of Mathematical Monographs Vol. 118. American Mathematical Society, Providence, Rhode Island (1993). Zbl0790.14017MR1213914
  9. P. Kiss, Differences of the terms of linear recurrences. Studia Sci. Math. Hungar. (1-4) 20 (1985), 285–293. Zbl0628.10008MR886031
  10. A. Pethö, Perfect powers in second order linear recurrences. J. Number Theory 15 (1982), 5–13. Zbl0488.10009MR666345
  11. W. M. Schmidt, Diophantine Approximations and Diophantine Equations. Lecture Notes in Math. vol. 1467. Springer-Verlag (1991). Zbl0754.11020MR1176315
  12. W. M. Schmidt, Diophantine Approximation. Lecture Notes in Math. vol. 785. Springer-Verlag. (1980). Zbl0421.10019MR568710
  13. A. Scremin, Tesi di Laurea “Equazioni e Disequazioni Diofantee Esponenziali”. Università degli Studi di Udine (2001). 
  14. T. N. Shorey and C. L. Stewart, Pure powers in Recurrence Sequences and Some Related Diophantine Equations. J. Number Theory 27 (1987), 324–352. Zbl0624.10009MR915504

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.