Diophantine inequalities with power sums
- [1] Institut für Mathematik A Technische Universität Graz Steyrergasse 30 A-8010 Graz, Austria
Journal de Théorie des Nombres de Bordeaux (2007)
- Volume: 19, Issue: 2, page 547-560
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topScremin, Amedeo. "Diophantine inequalities with power sums." Journal de Théorie des Nombres de Bordeaux 19.2 (2007): 547-560. <http://eudml.org/doc/249949>.
@article{Scremin2007,
abstract = {The ring of power sums is formed by complex functions on $\mathbb\{N\}$ of the form\[\alpha (n) = b\_1 c\_1^n + b\_2 c\_2^n + \ldots + b\_h c\_h^n,\]for some $b_\{i\}\in \overline\{\mathbb\{Q\}\}$ and $c_i \in \mathbb\{Z\}$. Let $F(x,y)\!\in \!\overline\{\mathbb\{Q\}\}[x,y]$ be absolutely irreducible, monic and of degree at least $2$ in $y$. We consider Diophantine inequalities of the form\[|F(\alpha (n),y)| < \Big | \frac\{\partial F\}\{\partial y\} (\alpha (n),y)\Big | \cdot |\alpha (n)|^\{-\varepsilon \}\]and show that all the solutions $(n,y)\in \mathbb\{N\}\times \mathbb\{Z\}$ have $y$ parametrized by some power sums in a finite set. As a consequence, we prove that the equation\[F(\alpha (n),y)=f(n),\]with $f\in \mathbb\{Z\}[x]$ not constant, $F$ monic in $y$ and $\alpha $ not constant, has only finitely many solutions.},
affiliation = {Institut für Mathematik A Technische Universität Graz Steyrergasse 30 A-8010 Graz, Austria},
author = {Scremin, Amedeo},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Diophantine inequalities; power sums},
language = {eng},
number = {2},
pages = {547-560},
publisher = {Université Bordeaux 1},
title = {Diophantine inequalities with power sums},
url = {http://eudml.org/doc/249949},
volume = {19},
year = {2007},
}
TY - JOUR
AU - Scremin, Amedeo
TI - Diophantine inequalities with power sums
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2007
PB - Université Bordeaux 1
VL - 19
IS - 2
SP - 547
EP - 560
AB - The ring of power sums is formed by complex functions on $\mathbb{N}$ of the form\[\alpha (n) = b_1 c_1^n + b_2 c_2^n + \ldots + b_h c_h^n,\]for some $b_{i}\in \overline{\mathbb{Q}}$ and $c_i \in \mathbb{Z}$. Let $F(x,y)\!\in \!\overline{\mathbb{Q}}[x,y]$ be absolutely irreducible, monic and of degree at least $2$ in $y$. We consider Diophantine inequalities of the form\[|F(\alpha (n),y)| < \Big | \frac{\partial F}{\partial y} (\alpha (n),y)\Big | \cdot |\alpha (n)|^{-\varepsilon }\]and show that all the solutions $(n,y)\in \mathbb{N}\times \mathbb{Z}$ have $y$ parametrized by some power sums in a finite set. As a consequence, we prove that the equation\[F(\alpha (n),y)=f(n),\]with $f\in \mathbb{Z}[x]$ not constant, $F$ monic in $y$ and $\alpha $ not constant, has only finitely many solutions.
LA - eng
KW - Diophantine inequalities; power sums
UR - http://eudml.org/doc/249949
ER -
References
top- A. Baker, A sharpening of the bounds for linear forms in logarithms II. Acta Arithmetica 24 (1973), 33–36. Zbl0261.10025MR376549
- P. Corvaja and U. Zannier, Diophantine Equations with Power Sums and Universal Hilbert Sets. Indag. Math., N.S. (3) 9 (1998), 317–332. Zbl0923.11103MR1692189
- P. Corvaja and U. Zannier, Some new applications of the Subspace Theorem. Compositio Math. 131 (2002), 319–340. Zbl1010.11038MR1905026
- R. Dvornicich and U. Zannier, On polynomials taking small values at integral arguments. Acta Arithmetica (2) 42 (1983), 189–196. Zbl0515.10049MR719248
- M. Eichler, Introduction to the theory of algebraic numbers and functions. Academic press, New York and London. (1966). Zbl0152.19502MR209258
- J.-H Evertse, An improvement of the quantitative subspace theorem. Compositio Math. (3) 101 (1996), 225–311. Zbl0856.11030MR1394517
- C. Fuchs, Exponential-Polynomial Equations and Linear Recurrences. PhD. thesis. Technische Universität Graz (2002).
- K. Iwasawa, Algebraic functions. Translations of Mathematical Monographs Vol. 118. American Mathematical Society, Providence, Rhode Island (1993). Zbl0790.14017MR1213914
- P. Kiss, Differences of the terms of linear recurrences. Studia Sci. Math. Hungar. (1-4) 20 (1985), 285–293. Zbl0628.10008MR886031
- A. Pethö, Perfect powers in second order linear recurrences. J. Number Theory 15 (1982), 5–13. Zbl0488.10009MR666345
- W. M. Schmidt, Diophantine Approximations and Diophantine Equations. Lecture Notes in Math. vol. 1467. Springer-Verlag (1991). Zbl0754.11020MR1176315
- W. M. Schmidt, Diophantine Approximation. Lecture Notes in Math. vol. 785. Springer-Verlag. (1980). Zbl0421.10019MR568710
- A. Scremin, Tesi di Laurea “Equazioni e Disequazioni Diofantee Esponenziali”. Università degli Studi di Udine (2001).
- T. N. Shorey and C. L. Stewart, Pure powers in Recurrence Sequences and Some Related Diophantine Equations. J. Number Theory 27 (1987), 324–352. Zbl0624.10009MR915504
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.