Power-free values, large deviations, and integer points on irrational curves

Harald A. Helfgott[1]

  • [1] Département de mathématiques et de statistique Université de Montréal CP 6128 succ Centre-Ville Montréal, QC H3C 3J7, Canada

Journal de Théorie des Nombres de Bordeaux (2007)

  • Volume: 19, Issue: 2, page 433-472
  • ISSN: 1246-7405

Abstract

top
Let f [ x ] be a polynomial of degree d 3 without roots of multiplicity d or ( d - 1 ) . Erdős conjectured that, if f satisfies the necessary local conditions, then f ( p ) is free of ( d - 1 ) th powers for infinitely many primes p . This is proved here for all f with sufficiently high entropy.The proof serves to demonstrate two innovations: a strong repulsion principle for integer points on curves of positive genus, and a number-theoretical analogue of Sanov’s theorem from the theory of large deviations.

How to cite

top

Helfgott, Harald A.. "Power-free values, large deviations, and integer points on irrational curves." Journal de Théorie des Nombres de Bordeaux 19.2 (2007): 433-472. <http://eudml.org/doc/249950>.

@article{Helfgott2007,
abstract = {Let $f\in \mathbb\{Z\}[x]$ be a polynomial of degree $d\ge 3$ without roots of multiplicity $d$ or $(d-1)$. Erdős conjectured that, if $f$ satisfies the necessary local conditions, then $f(p)$ is free of $(d-1)$th powers for infinitely many primes $p$. This is proved here for all $f$ with sufficiently high entropy.The proof serves to demonstrate two innovations: a strong repulsion principle for integer points on curves of positive genus, and a number-theoretical analogue of Sanov’s theorem from the theory of large deviations.},
affiliation = {Département de mathématiques et de statistique Université de Montréal CP 6128 succ Centre-Ville Montréal, QC H3C 3J7, Canada},
author = {Helfgott, Harald A.},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {2},
pages = {433-472},
publisher = {Université Bordeaux 1},
title = {Power-free values, large deviations, and integer points on irrational curves},
url = {http://eudml.org/doc/249950},
volume = {19},
year = {2007},
}

TY - JOUR
AU - Helfgott, Harald A.
TI - Power-free values, large deviations, and integer points on irrational curves
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2007
PB - Université Bordeaux 1
VL - 19
IS - 2
SP - 433
EP - 472
AB - Let $f\in \mathbb{Z}[x]$ be a polynomial of degree $d\ge 3$ without roots of multiplicity $d$ or $(d-1)$. Erdős conjectured that, if $f$ satisfies the necessary local conditions, then $f(p)$ is free of $(d-1)$th powers for infinitely many primes $p$. This is proved here for all $f$ with sufficiently high entropy.The proof serves to demonstrate two innovations: a strong repulsion principle for integer points on curves of positive genus, and a number-theoretical analogue of Sanov’s theorem from the theory of large deviations.
LA - eng
UR - http://eudml.org/doc/249950
ER -

References

top
  1. R. Arratia and S. Tavare, The cycle structure of random permutations. Ann. Probab. 20 (1992), 1567–1591. Zbl0759.60007MR1175278
  2. E. Bombieri, Le grand crible dans la théorie analytique des nombres. Astérisque 18, SMF, 1974. Zbl0292.10035MR891718
  3. E. Bombieri, The Mordell conjecture revisited. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), no. 4, 615–640. Zbl0722.14010MR1093712
  4. E. Bombieri and J. Pila, The number of integral points on arcs and ovals. Duke Math. J. 59 (1989), no. 2, 337–357. Zbl0718.11048MR1016893
  5. J. W. S. Cassels, The Mordell-Weil group of curves of genus 2. Arithmetic and Geometry, Vol. I, Birkäuser, Boston, 1983, 27–60. Zbl0529.14015MR717589
  6. J. H. Conway, A. Hulpke, and J. McKay, On transitive permutation groups. LMS J. Comput. Math. 1 (1998), 1–8. Zbl0920.20001MR1635715
  7. J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups. Grundlehren der Mathematischen Wissenschaften 290, Springer–Verlag, New York, 1988. Zbl0634.52002MR920369
  8. P. Corvaja and U. Zannier, On the number of integral points on algebraic curves. J. Reine Angew. Math. 565 (2003), 27–42. Zbl1153.11315MR2024644
  9. H. Davenport, Multiplicative number theory. Markham, Chicago, 1967. Zbl0159.06303MR217022
  10. A. Dembo and O. Zeitouni, Large deviations techniques and applications. 2nd ed., Springer–Verlag, New York, 1998. Zbl0896.60013MR1619036
  11. P. Erdős, Arithmetical properties of polynomials. J. London Math. Soc. 28 (1953), 416–425. Zbl0051.27703MR56635
  12. P. Erdős and M. Kac, The Gaussian law of errors in the theory of additive number theoretic functions. Amer. J. Math. 62 (1940), 738–742. Zbl0024.10203MR2374
  13. T. Estermann, Einige Sätze über quadratfreie Zahlen. Math. Ann. 105 (1931), 653–662. Zbl57.0222.02MR1512732
  14. The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.3. http://www.gap-system.org, 2002. 
  15. A. Granville, A B C allows us to count squarefrees. Internat. Math. Res. Notices 1998, no. 19, 991–1009. Zbl0924.11018MR1654759
  16. G. Greaves, Power-free values of binary forms. Quart. J. Math. Oxford 43(2) (1992), 45–65. Zbl0768.11034MR1150469
  17. G. Greaves, Sieves in number theory. Springer–Verlag, Berlin, 2001. Zbl1003.11044MR1836967
  18. B. H. Gross, Local heights on curves. In G. Cornell, J. H. Silverman, eds., Arithmetic Geometry, Springer–Verlag, New York, 1986. Zbl0605.14027MR861983
  19. H. Halberstam and K. F. Roth, On the gaps between consecutive k -free integers. J. London Math. Soc. 26 (1951), 268–273. Zbl0043.04901MR43120
  20. R. Heath-Brown, Counting rational points on algebraic varieties. C.I.M.E. lecture notes, to appear. Zbl1152.11027
  21. H. A. Helfgott, On the behaviour of root numbers in families of elliptic curves. Submitted, math.NT/0408141. 
  22. H. A. Helfgott, On the square-free sieve. Acta Arith. 115 (2004), 349–402. Zbl1057.11043MR2099831
  23. H. A. Helfgott and A. Venkatesh, Integral points on elliptic curves and 3 -torsion in class groups. To appear in J. Amer. Math. Soc. Zbl1127.14029MR2220098
  24. M. Hindry and J. H. Silverman, Diophantine geometry. Springer–Verlag, New York, 2000. Zbl0948.11023MR1745599
  25. F. den Hollander, Large deviations. AMS, Providence, RI, 2000. Zbl0949.60001MR1739680
  26. C. Hooley, Applications of sieve methods to the theory of numbers. Cambridge University Press, Cambridge, 1976. Zbl0327.10044MR404173
  27. C. Hooley, On power-free numbers and polynomials. I. J. Reine Angew. Math. 293/294 (1977), 67–85. Zbl0354.10038MR457388
  28. C. Hooley, On power-free numbers and polynomials. II. J. Reine Angew. Math. 295 (1977), 1–21. Zbl0354.10038MR457389
  29. M. Huxley and M. Nair, Power free values of polynomials, III. Proc. London Math. Soc. (3) 41 (1980), no. 1, 66–82. Zbl0435.10026MR579717
  30. H. Iwaniec and E. Kowalski, Analytic number theory. AMS Colloquium Publications, v. 53, AMS, Providence, RI, 2004. Zbl1059.11001MR2061214
  31. G. A. Kabatjanskii and V. I. Levenshtein, Bounds for packings on the sphere and in space (Russian). Problemy Peredači Informacii 14 (1978), no. 1, 3–25. Zbl0407.52005MR514023
  32. S. Lang, Algebraic number theory. 2nd ed., Springer-Verlag, New York, 1994. Zbl0811.11001MR1282723
  33. S. Lang, Fundamentals of diophantine geometry. Springer–Verlag, New York, 1983. Zbl0528.14013MR715605
  34. S. Lang, Number Theory III, Diophantine geometry. Springer–Verlag, New York, 1991. Zbl0744.14012MR1112552
  35. V. I. Levenshtein, Universal bounds for codes and designs. Handbook of coding theory, North-Holland, Amsterdam, Vol I., 499–648. Zbl0983.94056MR1667942
  36. M. Nair, Power free values of polynomials II. Proc. London Math. Soc. (3) 38 (1979), no. 2, 353–368. Zbl0404.10020MR531167
  37. P. M. Neumann, A lemma that is not Burnside’s. Math. Sci. 4 (1979), 133–141. Zbl0409.20001
  38. K. K. Norton, On the number of restricted prime factors of an integer, I. Illinois J. Math. 20 (1976), no. 4, 681–705. Zbl0329.10035MR419382
  39. B. Poonen and E. F. Schaefer, Explicit descent for Jacobians of cyclic covers of the projective line. J. Reine Angew. Math. 488 (1997), 141–188. Zbl0888.11023MR1465369
  40. A. Parson and J. Tull, Asymptotic behavior of multiplicative functions. J. Number Theory 10 (1978), no. 4, 395–420. Zbl0392.10038MR515052
  41. K. Ramsay, personal communication. 
  42. G. J. Rieger, Über die Anzahl der als Summe von zwei Quadraten darstellbaren und in einer primen Restklasse gelegenen Zahlen unterhalb einer positive Schranke, II. J. Reine Angew. Math. 217 (1965), 200–216. Zbl0141.04305MR174533
  43. I. N. Sanov, On the probability of large deviations of random variables (in Russian). Mat. Sb. N. S. 42 (84) (1957), 11–44. English translation in: Select. Transl. Math. Statist. and Probability I (1961), 213–244. Zbl0112.10106MR116378
  44. E. F. Schaefer, Computing a Selmer group of a Jacobian using functions on the curve. Math. Ann. 310 (1998), 447–471. Zbl0889.11021MR1612262
  45. W. R. Scott, Group Theory. 2nd ed., Dover, New York, 1987. Zbl0641.20001MR896269
  46. J.-P. Serre, Lectures on the Mordell-Weil theorem. 3rd ed., Vieweg, Braunschweig, 1997. Zbl0676.14005MR1757192
  47. J. H. Silverman, Arithmetic distance functions and height functions in diophantine geometry. Math. Ann. 279 (1987), 193–216. Zbl0607.14013MR919501
  48. P. Turán, Über einige Verallgemeinerungen eines Satzes von Hardy und Ramanujan. J. London Math. Soc. 11 (1936), 125–133. Zbl62.0158.02
  49. M. Young, Low-lying zeros of families of elliptic curves. J. Amer. Math. Soc. 19 (2006), 205–250. Zbl1086.11032MR2169047

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.