Power-free values, large deviations, and integer points on irrational curves
- [1] Département de mathématiques et de statistique Université de Montréal CP 6128 succ Centre-Ville Montréal, QC H3C 3J7, Canada
Journal de Théorie des Nombres de Bordeaux (2007)
- Volume: 19, Issue: 2, page 433-472
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topHelfgott, Harald A.. "Power-free values, large deviations, and integer points on irrational curves." Journal de Théorie des Nombres de Bordeaux 19.2 (2007): 433-472. <http://eudml.org/doc/249950>.
@article{Helfgott2007,
abstract = {Let $f\in \mathbb\{Z\}[x]$ be a polynomial of degree $d\ge 3$ without roots of multiplicity $d$ or $(d-1)$. Erdős conjectured that, if $f$ satisfies the necessary local conditions, then $f(p)$ is free of $(d-1)$th powers for infinitely many primes $p$. This is proved here for all $f$ with sufficiently high entropy.The proof serves to demonstrate two innovations: a strong repulsion principle for integer points on curves of positive genus, and a number-theoretical analogue of Sanov’s theorem from the theory of large deviations.},
affiliation = {Département de mathématiques et de statistique Université de Montréal CP 6128 succ Centre-Ville Montréal, QC H3C 3J7, Canada},
author = {Helfgott, Harald A.},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {2},
pages = {433-472},
publisher = {Université Bordeaux 1},
title = {Power-free values, large deviations, and integer points on irrational curves},
url = {http://eudml.org/doc/249950},
volume = {19},
year = {2007},
}
TY - JOUR
AU - Helfgott, Harald A.
TI - Power-free values, large deviations, and integer points on irrational curves
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2007
PB - Université Bordeaux 1
VL - 19
IS - 2
SP - 433
EP - 472
AB - Let $f\in \mathbb{Z}[x]$ be a polynomial of degree $d\ge 3$ without roots of multiplicity $d$ or $(d-1)$. Erdős conjectured that, if $f$ satisfies the necessary local conditions, then $f(p)$ is free of $(d-1)$th powers for infinitely many primes $p$. This is proved here for all $f$ with sufficiently high entropy.The proof serves to demonstrate two innovations: a strong repulsion principle for integer points on curves of positive genus, and a number-theoretical analogue of Sanov’s theorem from the theory of large deviations.
LA - eng
UR - http://eudml.org/doc/249950
ER -
References
top- R. Arratia and S. Tavare, The cycle structure of random permutations. Ann. Probab. 20 (1992), 1567–1591. Zbl0759.60007MR1175278
- E. Bombieri, Le grand crible dans la théorie analytique des nombres. Astérisque 18, SMF, 1974. Zbl0292.10035MR891718
- E. Bombieri, The Mordell conjecture revisited. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), no. 4, 615–640. Zbl0722.14010MR1093712
- E. Bombieri and J. Pila, The number of integral points on arcs and ovals. Duke Math. J. 59 (1989), no. 2, 337–357. Zbl0718.11048MR1016893
- J. W. S. Cassels, The Mordell-Weil group of curves of genus 2. Arithmetic and Geometry, Vol. I, Birkäuser, Boston, 1983, 27–60. Zbl0529.14015MR717589
- J. H. Conway, A. Hulpke, and J. McKay, On transitive permutation groups. LMS J. Comput. Math. 1 (1998), 1–8. Zbl0920.20001MR1635715
- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups. Grundlehren der Mathematischen Wissenschaften 290, Springer–Verlag, New York, 1988. Zbl0634.52002MR920369
- P. Corvaja and U. Zannier, On the number of integral points on algebraic curves. J. Reine Angew. Math. 565 (2003), 27–42. Zbl1153.11315MR2024644
- H. Davenport, Multiplicative number theory. Markham, Chicago, 1967. Zbl0159.06303MR217022
- A. Dembo and O. Zeitouni, Large deviations techniques and applications. 2nd ed., Springer–Verlag, New York, 1998. Zbl0896.60013MR1619036
- P. Erdős, Arithmetical properties of polynomials. J. London Math. Soc. 28 (1953), 416–425. Zbl0051.27703MR56635
- P. Erdős and M. Kac, The Gaussian law of errors in the theory of additive number theoretic functions. Amer. J. Math. 62 (1940), 738–742. Zbl0024.10203MR2374
- T. Estermann, Einige Sätze über quadratfreie Zahlen. Math. Ann. 105 (1931), 653–662. Zbl57.0222.02MR1512732
- The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.3. http://www.gap-system.org, 2002.
- A. Granville, allows us to count squarefrees. Internat. Math. Res. Notices 1998, no. 19, 991–1009. Zbl0924.11018MR1654759
- G. Greaves, Power-free values of binary forms. Quart. J. Math. Oxford 43(2) (1992), 45–65. Zbl0768.11034MR1150469
- G. Greaves, Sieves in number theory. Springer–Verlag, Berlin, 2001. Zbl1003.11044MR1836967
- B. H. Gross, Local heights on curves. In G. Cornell, J. H. Silverman, eds., Arithmetic Geometry, Springer–Verlag, New York, 1986. Zbl0605.14027MR861983
- H. Halberstam and K. F. Roth, On the gaps between consecutive -free integers. J. London Math. Soc. 26 (1951), 268–273. Zbl0043.04901MR43120
- R. Heath-Brown, Counting rational points on algebraic varieties. C.I.M.E. lecture notes, to appear. Zbl1152.11027
- H. A. Helfgott, On the behaviour of root numbers in families of elliptic curves. Submitted, math.NT/0408141.
- H. A. Helfgott, On the square-free sieve. Acta Arith. 115 (2004), 349–402. Zbl1057.11043MR2099831
- H. A. Helfgott and A. Venkatesh, Integral points on elliptic curves and -torsion in class groups. To appear in J. Amer. Math. Soc. Zbl1127.14029MR2220098
- M. Hindry and J. H. Silverman, Diophantine geometry. Springer–Verlag, New York, 2000. Zbl0948.11023MR1745599
- F. den Hollander, Large deviations. AMS, Providence, RI, 2000. Zbl0949.60001MR1739680
- C. Hooley, Applications of sieve methods to the theory of numbers. Cambridge University Press, Cambridge, 1976. Zbl0327.10044MR404173
- C. Hooley, On power-free numbers and polynomials. I. J. Reine Angew. Math. 293/294 (1977), 67–85. Zbl0354.10038MR457388
- C. Hooley, On power-free numbers and polynomials. II. J. Reine Angew. Math. 295 (1977), 1–21. Zbl0354.10038MR457389
- M. Huxley and M. Nair, Power free values of polynomials, III. Proc. London Math. Soc. (3) 41 (1980), no. 1, 66–82. Zbl0435.10026MR579717
- H. Iwaniec and E. Kowalski, Analytic number theory. AMS Colloquium Publications, v. 53, AMS, Providence, RI, 2004. Zbl1059.11001MR2061214
- G. A. Kabatjanskii and V. I. Levenshtein, Bounds for packings on the sphere and in space (Russian). Problemy Peredači Informacii 14 (1978), no. 1, 3–25. Zbl0407.52005MR514023
- S. Lang, Algebraic number theory. 2nd ed., Springer-Verlag, New York, 1994. Zbl0811.11001MR1282723
- S. Lang, Fundamentals of diophantine geometry. Springer–Verlag, New York, 1983. Zbl0528.14013MR715605
- S. Lang, Number Theory III, Diophantine geometry. Springer–Verlag, New York, 1991. Zbl0744.14012MR1112552
- V. I. Levenshtein, Universal bounds for codes and designs. Handbook of coding theory, North-Holland, Amsterdam, Vol I., 499–648. Zbl0983.94056MR1667942
- M. Nair, Power free values of polynomials II. Proc. London Math. Soc. (3) 38 (1979), no. 2, 353–368. Zbl0404.10020MR531167
- P. M. Neumann, A lemma that is not Burnside’s. Math. Sci. 4 (1979), 133–141. Zbl0409.20001
- K. K. Norton, On the number of restricted prime factors of an integer, I. Illinois J. Math. 20 (1976), no. 4, 681–705. Zbl0329.10035MR419382
- B. Poonen and E. F. Schaefer, Explicit descent for Jacobians of cyclic covers of the projective line. J. Reine Angew. Math. 488 (1997), 141–188. Zbl0888.11023MR1465369
- A. Parson and J. Tull, Asymptotic behavior of multiplicative functions. J. Number Theory 10 (1978), no. 4, 395–420. Zbl0392.10038MR515052
- K. Ramsay, personal communication.
- G. J. Rieger, Über die Anzahl der als Summe von zwei Quadraten darstellbaren und in einer primen Restklasse gelegenen Zahlen unterhalb einer positive Schranke, II. J. Reine Angew. Math. 217 (1965), 200–216. Zbl0141.04305MR174533
- I. N. Sanov, On the probability of large deviations of random variables (in Russian). Mat. Sb. N. S. 42 (84) (1957), 11–44. English translation in: Select. Transl. Math. Statist. and Probability I (1961), 213–244. Zbl0112.10106MR116378
- E. F. Schaefer, Computing a Selmer group of a Jacobian using functions on the curve. Math. Ann. 310 (1998), 447–471. Zbl0889.11021MR1612262
- W. R. Scott, Group Theory. 2nd ed., Dover, New York, 1987. Zbl0641.20001MR896269
- J.-P. Serre, Lectures on the Mordell-Weil theorem. 3rd ed., Vieweg, Braunschweig, 1997. Zbl0676.14005MR1757192
- J. H. Silverman, Arithmetic distance functions and height functions in diophantine geometry. Math. Ann. 279 (1987), 193–216. Zbl0607.14013MR919501
- P. Turán, Über einige Verallgemeinerungen eines Satzes von Hardy und Ramanujan. J. London Math. Soc. 11 (1936), 125–133. Zbl62.0158.02
- M. Young, Low-lying zeros of families of elliptic curves. J. Amer. Math. Soc. 19 (2006), 205–250. Zbl1086.11032MR2169047
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.