Thomas’ conjecture over function fields
- [1] Institute of Analysis and Computational Number Theory Technische Universität Graz Steyrergasse 30, A-8010 Graz, Austria
Journal de Théorie des Nombres de Bordeaux (2007)
- Volume: 19, Issue: 1, page 289-309
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topZiegler, Volker. "Thomas’ conjecture over function fields." Journal de Théorie des Nombres de Bordeaux 19.1 (2007): 289-309. <http://eudml.org/doc/249951>.
@article{Ziegler2007,
abstract = {Thomas’ conjecture is, given monic polynomials $p_1,$$\ldots ,p_d \in \mathbb\{Z\}[a]$ with $0<\deg p_1< \cdots <\deg p_d$, then the Thue equation (over the rational integers)\[(X-p\_1(a) Y) \cdots (X-p\_d(a) Y)+ Y^d=1\]has only trivial solutions, provided $a\ge a_0$ with effective computable $a_0$. We consider a function field analogue of Thomas’ conjecture in case of degree $d=3$. Moreover we find a counterexample to Thomas’ conjecture for $d=3$.},
affiliation = {Institute of Analysis and Computational Number Theory Technische Universität Graz Steyrergasse 30, A-8010 Graz, Austria},
author = {Ziegler, Volker},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Thue equation; function fields; cubic and quartic equations; ABC-theorem},
language = {eng},
number = {1},
pages = {289-309},
publisher = {Université Bordeaux 1},
title = {Thomas’ conjecture over function fields},
url = {http://eudml.org/doc/249951},
volume = {19},
year = {2007},
}
TY - JOUR
AU - Ziegler, Volker
TI - Thomas’ conjecture over function fields
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2007
PB - Université Bordeaux 1
VL - 19
IS - 1
SP - 289
EP - 309
AB - Thomas’ conjecture is, given monic polynomials $p_1,$$\ldots ,p_d \in \mathbb{Z}[a]$ with $0<\deg p_1< \cdots <\deg p_d$, then the Thue equation (over the rational integers)\[(X-p_1(a) Y) \cdots (X-p_d(a) Y)+ Y^d=1\]has only trivial solutions, provided $a\ge a_0$ with effective computable $a_0$. We consider a function field analogue of Thomas’ conjecture in case of degree $d=3$. Moreover we find a counterexample to Thomas’ conjecture for $d=3$.
LA - eng
KW - Thue equation; function fields; cubic and quartic equations; ABC-theorem
UR - http://eudml.org/doc/249951
ER -
References
top- A. Baker, Linear forms in the logarithms of algebraic numbers. I, II, III. Mathematika 13 (1966), 204–216; ibid. 14 (1967), 102–107; ibid. 14 (1967), 220–228. Zbl0161.05202MR220680
- A. Baker, Contributions to the theory of Diophantine equations. I. On the representation of integers by binary forms. Philos. Trans. Roy. Soc. London Ser. A 263 (1967/1968), 173–191, Zbl0157.09702MR228424
- A. Baker, Linear forms in the logarithms of algebraic numbers. IV. Mathematika 15 (1968), 204–216. Zbl0169.37802MR258756
- P. M. Cohn, Algebraic numbers and algebraic functions. Chapman and Hall Mathematics Series. Chapman & Hall, London, 1991. Zbl0754.11028MR1140705
- C. Fuchs, V. Ziegler, On a family of Thue equations over function fields. Monatsh. Math. 147 (2006), 11–23. Zbl1103.11009MR2199120
- C. Fuchs, V. Ziegler, Thomas’ family of Thue equations over function fields. Quart. J. Math. 57 (2006), 81–91. Zbl1185.11020
- B. P. Gill, An analogue for algebraic functions of the Thue-Siegel theorem. Ann. of Math. (2) 31(2) (1930), 207–218. Zbl56.0188.04MR1502935
- C. Heuberger, On a conjecture of E. Thomas concerning parametrized Thue equations. Acta. Arith. 98 (2001), 375–394. Zbl0973.11043MR1829779
- S. Lang, Elliptic curves: Diophantine analysis. Volume 231 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1978. Zbl0388.10001MR518817
- E. Lee, Studies on Diophantine Equations. PhD thesis, Cambridge University, 1992.
- G. Lettl, Thue equations over algebraic function fields. Acta Arith. 117(2) (2005), 107–123. Zbl1073.11020MR2139595
- R. C. Mason, On Thue’s equation over function fields. J. London Math. Soc. (2) 24(3) (1981), 414–426. Zbl0453.10017
- R. C. Mason, The hyperelliptic equation over function fields. Math. Proc. Camb. Philos. Soc. 93 (1983), 219–230. Zbl0513.10016MR691990
- R. C. Mason, Diophantine equations over function fields. Volume 96 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1984. Zbl0533.10012MR754559
- M. Mignotte, N. Tzanakis, On a family of cubics. J. Number Theory 39(1) (1991), 41–49. Zbl0734.11025MR1123167
- P. Ribenboim, Remarks on existentially closed fields and diophantine equations. Rend. Sem. Mat. Univ. Padova 71 (1984), 229–237. Zbl0545.12012MR769439
- M. Rosen, Number theory in function fields. Volume 210 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2002. Zbl1043.11079MR1876657
- W. M. Schmidt, Thue’s equation over function fields. J. Austral. Math. Soc. Ser. A 25(4) (1978), 385–422. Zbl0389.10019
- E. Thomas, Solutions to certain families of Thue equations. J. Number Theory 43(3) (1993), 319–369. Zbl0774.11013MR1212687
- A. Thue, Über Annäherungswerte algebraischer Zahlen. J. Reine und Angew. Math. 135 (1909), 284–305.
- E. Wirsing, Approximation mit algebraischen Zahlen beschränkten Grades. J. Reine Angew. Math. 206 (1960), 67–77. Zbl0097.03503MR142510
- V. Ziegler, On a family of Cubics over Imaginary Quadratic Fields. Period. Math. Hungar. 51(2) (2005), 109–130. Zbl1121.11029MR2194942
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.