A new lower bound for
- [1] Department of Mechanics and Mathematics Moscow Lomonosov State University Vorobiovy Gory, GSP-2 119992 Moscow, Russia
Journal de Théorie des Nombres de Bordeaux (2007)
- Volume: 19, Issue: 1, page 311-323
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topZudilin, Wadim. "A new lower bound for ${\Vert (3/2)^k\Vert }$." Journal de Théorie des Nombres de Bordeaux 19.1 (2007): 311-323. <http://eudml.org/doc/249966>.
@article{Zudilin2007,
abstract = {We prove that, for all integers $k$ exceeding some effectively computable number $K$, the distance from $(3/2)^k$ to the nearest integer is greater than $0\{.\}5803^k$.},
affiliation = {Department of Mechanics and Mathematics Moscow Lomonosov State University Vorobiovy Gory, GSP-2 119992 Moscow, Russia},
author = {Zudilin, Wadim},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Pade approximation; hypergeometric functions; Waring's problem},
language = {eng},
number = {1},
pages = {311-323},
publisher = {Université Bordeaux 1},
title = {A new lower bound for $\{\Vert (3/2)^k\Vert \}$},
url = {http://eudml.org/doc/249966},
volume = {19},
year = {2007},
}
TY - JOUR
AU - Zudilin, Wadim
TI - A new lower bound for ${\Vert (3/2)^k\Vert }$
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2007
PB - Université Bordeaux 1
VL - 19
IS - 1
SP - 311
EP - 323
AB - We prove that, for all integers $k$ exceeding some effectively computable number $K$, the distance from $(3/2)^k$ to the nearest integer is greater than $0{.}5803^k$.
LA - eng
KW - Pade approximation; hypergeometric functions; Waring's problem
UR - http://eudml.org/doc/249966
ER -
References
top- A. Baker, J. Coates, Fractional parts of powers of rationals. Math. Proc. Cambridge Philos. Soc. 77 (1975), 269–279. Zbl0298.10018MR360480
- M. A. Bennett, Fractional parts of powers of rational numbers. Math. Proc. Cambridge Philos. Soc. 114 (1993), 191–201. Zbl0791.11030MR1230126
- M. A. Bennett, An ideal Waring problem with restricted summands. Acta Arith. 66 (1994), 125–132. Zbl0793.11026MR1276984
- F. Beukers, Fractional parts of powers of rationals. Math. Proc. Cambridge Philos. Soc. 90 (1981), 13–20. Zbl0466.10030MR611281
- G. V. Chudnovsky, Padé approximations to the generalized hypergeometric functions. I. J. Math. Pures Appl. (9) 58 (1979), 445–476. Zbl0434.10023MR566655
- F. Delmer, J.-M. Deshouillers, The computation of in Waring’s problem. Math. Comp. 54 (1990), 885–893. Zbl0701.11043
- A. K. Dubickas, A lower bound for the quantity . Russian Math. Surveys 45 (1990), 163–164. Zbl0712.11037MR1075396
- L. Habsieger, Explicit lower bounds for . Acta Arith. 106 (2003), 299–309. Zbl1126.11325MR1957111
- J. Kubina, M. Wunderlich, Extending Waring’s conjecture up to . Math. Comp. 55 (1990), 815–820. Zbl0725.11051
- K. Mahler, On the fractional parts of powers of real numbers. Mathematika 4 (1957), 122–124. Zbl0208.31002MR93509
- L. J. Slater, Generalized hypergeometric functions. Cambridge University Press, 1966. Zbl0135.28101MR201688
- R. C. Vaughan, The Hardy–Littlewood method. Cambridge Tracts in Mathematics 125, Cambridge University Press, 1997. Zbl0868.11046MR1435742
- W. Zudilin, Ramanujan-type formulae and irrationality measures of certain multiples of . Mat. Sb. 196:7 (2005), 51–66. Zbl1114.11064MR2188369
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.