A new lower bound for ( 3 / 2 ) k

Wadim Zudilin[1]

  • [1] Department of Mechanics and Mathematics Moscow Lomonosov State University Vorobiovy Gory, GSP-2 119992 Moscow, Russia

Journal de Théorie des Nombres de Bordeaux (2007)

  • Volume: 19, Issue: 1, page 311-323
  • ISSN: 1246-7405

Abstract

top
We prove that, for all integers k exceeding some effectively computable number  K , the distance from ( 3 / 2 ) k to the nearest integer is greater than 0 . 5803 k .

How to cite

top

Zudilin, Wadim. "A new lower bound for ${\Vert (3/2)^k\Vert }$." Journal de Théorie des Nombres de Bordeaux 19.1 (2007): 311-323. <http://eudml.org/doc/249966>.

@article{Zudilin2007,
abstract = {We prove that, for all integers $k$ exceeding some effectively computable number $K$, the distance from $(3/2)^k$ to the nearest integer is greater than $0\{.\}5803^k$.},
affiliation = {Department of Mechanics and Mathematics Moscow Lomonosov State University Vorobiovy Gory, GSP-2 119992 Moscow, Russia},
author = {Zudilin, Wadim},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Pade approximation; hypergeometric functions; Waring's problem},
language = {eng},
number = {1},
pages = {311-323},
publisher = {Université Bordeaux 1},
title = {A new lower bound for $\{\Vert (3/2)^k\Vert \}$},
url = {http://eudml.org/doc/249966},
volume = {19},
year = {2007},
}

TY - JOUR
AU - Zudilin, Wadim
TI - A new lower bound for ${\Vert (3/2)^k\Vert }$
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2007
PB - Université Bordeaux 1
VL - 19
IS - 1
SP - 311
EP - 323
AB - We prove that, for all integers $k$ exceeding some effectively computable number $K$, the distance from $(3/2)^k$ to the nearest integer is greater than $0{.}5803^k$.
LA - eng
KW - Pade approximation; hypergeometric functions; Waring's problem
UR - http://eudml.org/doc/249966
ER -

References

top
  1. A. Baker, J. Coates, Fractional parts of powers of rationals. Math. Proc. Cambridge Philos. Soc. 77 (1975), 269–279. Zbl0298.10018MR360480
  2. M. A. Bennett, Fractional parts of powers of rational numbers. Math. Proc. Cambridge Philos. Soc. 114 (1993), 191–201. Zbl0791.11030MR1230126
  3. M. A. Bennett, An ideal Waring problem with restricted summands. Acta Arith. 66 (1994), 125–132. Zbl0793.11026MR1276984
  4. F. Beukers, Fractional parts of powers of rationals. Math. Proc. Cambridge Philos. Soc. 90 (1981), 13–20. Zbl0466.10030MR611281
  5. G. V. Chudnovsky, Padé approximations to the generalized hypergeometric functions. I. J. Math. Pures Appl. (9) 58 (1979), 445–476. Zbl0434.10023MR566655
  6. F. Delmer, J.-M. Deshouillers, The computation of g ( k ) in Waring’s problem. Math. Comp. 54 (1990), 885–893. Zbl0701.11043
  7. A. K. Dubickas, A lower bound for the quantity ( 3 / 2 ) k . Russian Math. Surveys 45 (1990), 163–164. Zbl0712.11037MR1075396
  8. L. Habsieger, Explicit lower bounds for ( 3 / 2 ) k . Acta Arith. 106 (2003), 299–309. Zbl1126.11325MR1957111
  9. J. Kubina, M. Wunderlich, Extending Waring’s conjecture up to 471600000 . Math. Comp. 55 (1990), 815–820. Zbl0725.11051
  10. K. Mahler, On the fractional parts of powers of real numbers. Mathematika 4 (1957), 122–124. Zbl0208.31002MR93509
  11. L. J. Slater, Generalized hypergeometric functions. Cambridge University Press, 1966. Zbl0135.28101MR201688
  12. R. C. Vaughan, The Hardy–Littlewood method. Cambridge Tracts in Mathematics 125, Cambridge University Press, 1997. Zbl0868.11046MR1435742
  13. W. Zudilin, Ramanujan-type formulae and irrationality measures of certain multiples of  π . Mat. Sb. 196:7 (2005), 51–66. Zbl1114.11064MR2188369

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.