# Klein polyhedra and lattices with positive norm minima

Oleg N. German^{[1]}

- [1] Moscow State University Vorobiovy Gory, GSP–2 119992 Moscow, RUSSIA

Journal de Théorie des Nombres de Bordeaux (2007)

- Volume: 19, Issue: 1, page 175-190
- ISSN: 1246-7405

## Access Full Article

top## Abstract

top## How to cite

topGerman, Oleg N.. "Klein polyhedra and lattices with positive norm minima." Journal de Théorie des Nombres de Bordeaux 19.1 (2007): 175-190. <http://eudml.org/doc/249976>.

@article{German2007,

abstract = {A Klein polyhedron is defined as the convex hull of nonzero lattice points inside an orthant of $\mathbb\{R\}^n$. It generalizes the concept of continued fraction. In this paper facets and edge stars of vertices of a Klein polyhedron are considered as multidimensional analogs of partial quotients and quantitative characteristics of these “partial quotients”, so called determinants, are defined. It is proved that the facets of all the $2^n$ Klein polyhedra generated by a lattice $\Lambda $ have uniformly bounded determinants if and only if the facets and the edge stars of the vertices of the Klein polyhedron generated by $\Lambda $ and related to the positive orthant have uniformly bounded determinants.},

affiliation = {Moscow State University Vorobiovy Gory, GSP–2 119992 Moscow, RUSSIA},

author = {German, Oleg N.},

journal = {Journal de Théorie des Nombres de Bordeaux},

keywords = {Klein polyhedra},

language = {eng},

number = {1},

pages = {175-190},

publisher = {Université Bordeaux 1},

title = {Klein polyhedra and lattices with positive norm minima},

url = {http://eudml.org/doc/249976},

volume = {19},

year = {2007},

}

TY - JOUR

AU - German, Oleg N.

TI - Klein polyhedra and lattices with positive norm minima

JO - Journal de Théorie des Nombres de Bordeaux

PY - 2007

PB - Université Bordeaux 1

VL - 19

IS - 1

SP - 175

EP - 190

AB - A Klein polyhedron is defined as the convex hull of nonzero lattice points inside an orthant of $\mathbb{R}^n$. It generalizes the concept of continued fraction. In this paper facets and edge stars of vertices of a Klein polyhedron are considered as multidimensional analogs of partial quotients and quantitative characteristics of these “partial quotients”, so called determinants, are defined. It is proved that the facets of all the $2^n$ Klein polyhedra generated by a lattice $\Lambda $ have uniformly bounded determinants if and only if the facets and the edge stars of the vertices of the Klein polyhedron generated by $\Lambda $ and related to the positive orthant have uniformly bounded determinants.

LA - eng

KW - Klein polyhedra

UR - http://eudml.org/doc/249976

ER -

## References

top- O. N. German, Klein polyhedra and norm minima of lattices. Doklady Mathematics 406:3 (2006), 38–41. Zbl1155.11332MR2258502
- P. Erdös, P. Gruber, J. Hammer, Lattice Points. Pitman Monographs and Surveys in Pure and Applied Mathematics 39. Longman Scientific & Technical, Harlow (1989). Zbl0683.10025MR1003606
- F. Klein, Uber eine geometrische Auffassung der gewohnlichen Kettenbruchentwichlung. Nachr. Ges. Wiss. Gottingen 3 (1895), 357–359.
- O. N. German, Sails and norm minima of lattices. Mat. Sb. 196:3 (2005), 31–60; English transl., Russian Acad. Sci. Sb. Math. 196:3 (2005), 337–367. Zbl1084.11035MR2144275
- J.–O. Moussafir, Convex hulls of integral points. Zapiski nauch. sem. POMI 256 (2000). Zbl1025.52006
- V. I. Arnold, Continued fractions. Moscow: Moscow Center of Continuous Mathematical Education (2002).
- V. I. Arnold, Preface. Amer. Math. Soc. Transl. 197:2 (1999), ix–xii.
- E. I. Korkina, Two–dimensional continued fractions. The simplest examples. Proc. Steklov Math. Inst. RAS 209 (1995), 143–166. Zbl0883.11034MR1422222
- T. Bonnesen, W. Fenchel, Theorie der konvexen Körper. Berlin: Springer (1934). Zbl0008.07708MR344997
- B. Grünbaum, Convex polytopes. London, New York, Sydney: Interscience Publ. (1967). Zbl0163.16603MR226496
- P. McMullen, G. C. Shephard, Convex polytopes and the upper bound conjecture. Cambridge (GB): Cambridge University Press (1971). Zbl0217.46702MR301635
- G. Ewald, Combinatorial convexity and algebraic geometry. Sringer–Verlag New York, Inc. (1996). Zbl0869.52001MR1418400
- Z. I. Borevich, I. R. Shafarevich, Number theory. NY Academic Press (1966). Zbl0145.04902MR195803
- J. W. S. Cassels, H. P. F. Swinnerton–Dyer, On the product of three homogeneous linear forms and indefinite ternary quadratic forms. Phil. Trans. Royal Soc. London A 248 (1955), 73–96. Zbl0065.27905MR70653
- B. F. Skubenko, Minima of a decomposable cubic form of three variables. Zapiski nauch. sem. LOMI 168 (1988). Zbl0718.11026
- B. F. Skubenko, Minima of decomposable forms of degree $n$ of $n$ variables for $n\ge 3$. Zapiski nauch. sem. LOMI 183 (1990). Zbl0784.11028
- G. Lachaud, Voiles et Polyèdres de Klein. Act. Sci. Ind., Hermann (2002).
- L. Danzer, B. Grünbaum, V. Klee, Helly’s Theorem and its relatives. in Convexity (Proc. Symp. Pure Math. 7) 101–180, AMS, Providence, Rhode Island, 1963. Zbl0132.17401

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.