Odd perfect polynomials over 𝔽 2

Luis H. Gallardo[1]; Olivier Rahavandrainy[1]

  • [1] Université de Brest 6, Avenue Le Gorgeu, C.S. 93837 29238 Brest cedex 3, France

Journal de Théorie des Nombres de Bordeaux (2007)

  • Volume: 19, Issue: 1, page 165-174
  • ISSN: 1246-7405

Abstract

top
A perfect polynomial over 𝔽 2 is a polynomial A 𝔽 2 [ x ] that equals the sum of all its divisors. If gcd ( A , x 2 + x ) = 1 then we say that A is odd. In this paper we show the non-existence of odd perfect polynomials with either three prime divisors or with at most nine prime divisors provided that all exponents are equal to 2 .

How to cite

top

Gallardo, Luis H., and Rahavandrainy, Olivier. "Odd perfect polynomials over ${\mathbb{F}_2}$." Journal de Théorie des Nombres de Bordeaux 19.1 (2007): 165-174. <http://eudml.org/doc/249980>.

@article{Gallardo2007,
abstract = {A perfect polynomial over $\mathbb\{F\}_2$ is a polynomial $A \in \mathbb\{F\}_2[x]$ that equals the sum of all its divisors. If $\gcd (A,x^2+x)=1$ then we say that $A$ is odd. In this paper we show the non-existence of odd perfect polynomials with either three prime divisors or with at most nine prime divisors provided that all exponents are equal to $2.$},
affiliation = {Université de Brest 6, Avenue Le Gorgeu, C.S. 93837 29238 Brest cedex 3, France; Université de Brest 6, Avenue Le Gorgeu, C.S. 93837 29238 Brest cedex 3, France},
author = {Gallardo, Luis H., Rahavandrainy, Olivier},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {finite field; polynomial},
language = {eng},
number = {1},
pages = {165-174},
publisher = {Université Bordeaux 1},
title = {Odd perfect polynomials over $\{\mathbb\{F\}_2\}$},
url = {http://eudml.org/doc/249980},
volume = {19},
year = {2007},
}

TY - JOUR
AU - Gallardo, Luis H.
AU - Rahavandrainy, Olivier
TI - Odd perfect polynomials over ${\mathbb{F}_2}$
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2007
PB - Université Bordeaux 1
VL - 19
IS - 1
SP - 165
EP - 174
AB - A perfect polynomial over $\mathbb{F}_2$ is a polynomial $A \in \mathbb{F}_2[x]$ that equals the sum of all its divisors. If $\gcd (A,x^2+x)=1$ then we say that $A$ is odd. In this paper we show the non-existence of odd perfect polynomials with either three prime divisors or with at most nine prime divisors provided that all exponents are equal to $2.$
LA - eng
KW - finite field; polynomial
UR - http://eudml.org/doc/249980
ER -

References

top
  1. E. F. Canaday, The sum of the divisors of a polynomial. Duke Math. J. 8 (1941), 721–737. Zbl0061.06605MR5509
  2. T. B. Beard Jr, James. R. Oconnell Jr, Karen I. West, Perfect polynomials over G F ( q ) . Rend. Accad. Lincei 62 (1977), 283–291. Zbl0404.12014MR497649
  3. L. Gallardo, O. Rahavandrainy, On perfect polynomials over 𝔽 4 . Portugaliae Mathematica 62 - Fasc. 1 (2005), 109–122. Zbl1131.11079MR2126875
  4. L. Gallardo, O. Rahavandrainy, Perfect polynomials over 𝔽 4 with less than five prime factors. Portugaliae Mathematica 64 - Fasc. 1 (2007), 21–38. Zbl1196.11160MR2298110
  5. Rudolf Lidl, Harald Niederreiter, Finite Fields, Encyclopedia of Mathematics and its applications. Cambridge University Press, 1983, (Reprinted 1987). Zbl0866.11069MR746963
  6. Rudolf Steuerwald, Verschärfung einer notwendigen Bedingung für die Existenz einer ungeraden vollkommenen Zahl. S. B. math.-nat. Abt. Bayer. Akad. Wiss München (1937), 69–72. Zbl0018.20301

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.