On Robin’s criterion for the Riemann hypothesis
YoungJu Choie[1]; Nicolas Lichiardopol[2]; Pieter Moree[3]; Patrick Solé[4]
- [1] Dept of Mathematics POSTECH Pohang, Korea 790-784
- [2] ESSI Route des Colles 06 903 Sophia Antipolis, France
- [3] Max-Planck-Institut für Mathematik Vivatsgasse 7 D-53111 Bonn, Germany
- [4] CNRS-I3S ESSI Route des Colles 06 903 Sophia Antipolis, France
Journal de Théorie des Nombres de Bordeaux (2007)
- Volume: 19, Issue: 2, page 357-372
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topChoie, YoungJu, et al. "On Robin’s criterion for the Riemann hypothesis." Journal de Théorie des Nombres de Bordeaux 19.2 (2007): 357-372. <http://eudml.org/doc/249981>.
@article{Choie2007,
abstract = {Robin’s criterion states that the Riemann Hypothesis (RH) is true if and only if Robin’s inequality $\sigma (n):=\sum _\{d|n\}d<e^\{\gamma \}n\log \log n$ is satisfied for $n\ge 5041$, where $\gamma $ denotes the Euler(-Mascheroni) constant. We show by elementary methods that if $n\ge 37$ does not satisfy Robin’s criterion it must be even and is neither squarefree nor squarefull. Using a bound of Rosser and Schoenfeld we show, moreover, that $n$ must be divisible by a fifth power $>1$. As consequence we obtain that RH holds true iff every natural number divisible by a fifth power $>1$ satisfies Robin’s inequality.},
affiliation = {Dept of Mathematics POSTECH Pohang, Korea 790-784; ESSI Route des Colles 06 903 Sophia Antipolis, France; Max-Planck-Institut für Mathematik Vivatsgasse 7 D-53111 Bonn, Germany; CNRS-I3S ESSI Route des Colles 06 903 Sophia Antipolis, France},
author = {Choie, YoungJu, Lichiardopol, Nicolas, Moree, Pieter, Solé, Patrick},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Riemann hypothesis; Robin's criterion; Euler constant},
language = {eng},
number = {2},
pages = {357-372},
publisher = {Université Bordeaux 1},
title = {On Robin’s criterion for the Riemann hypothesis},
url = {http://eudml.org/doc/249981},
volume = {19},
year = {2007},
}
TY - JOUR
AU - Choie, YoungJu
AU - Lichiardopol, Nicolas
AU - Moree, Pieter
AU - Solé, Patrick
TI - On Robin’s criterion for the Riemann hypothesis
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2007
PB - Université Bordeaux 1
VL - 19
IS - 2
SP - 357
EP - 372
AB - Robin’s criterion states that the Riemann Hypothesis (RH) is true if and only if Robin’s inequality $\sigma (n):=\sum _{d|n}d<e^{\gamma }n\log \log n$ is satisfied for $n\ge 5041$, where $\gamma $ denotes the Euler(-Mascheroni) constant. We show by elementary methods that if $n\ge 37$ does not satisfy Robin’s criterion it must be even and is neither squarefree nor squarefull. Using a bound of Rosser and Schoenfeld we show, moreover, that $n$ must be divisible by a fifth power $>1$. As consequence we obtain that RH holds true iff every natural number divisible by a fifth power $>1$ satisfies Robin’s inequality.
LA - eng
KW - Riemann hypothesis; Robin's criterion; Euler constant
UR - http://eudml.org/doc/249981
ER -
References
top- T. M. Apostol, Introduction to analytic number theory. Undergraduate Texts in Mathematics. Springer-Verlag, New York-Heidelberg, 1976. Zbl0335.10001MR434929
- K. Briggs, Abundant numbers and the Riemann hypothesis. Experiment. Math. 15 (2006), 251–256. Zbl1149.11041MR2253548
- J. H. Bruinier, Primzahlen, Teilersummen und die Riemannsche Vermutung. Math. Semesterber. 48 (2001), 79–92. Zbl0982.11052MR1950214
- S. R. Finch, Mathematical constants. Encyclopedia of Mathematics and its Applications 94, Cambridge University Press, Cambridge, 2003. Zbl1054.00001MR2003519
- J. C. Lagarias, An elementary problem equivalent to the Riemann hypothesis. Amer. Math. Monthly 109 (2002), 534–543. Zbl1098.11005MR1908008
- J.-L. Nicolas, Petites valeurs de la fonction d’Euler. J. Number Theory 17 (1983), 375–388. Zbl0521.10039
- S. Ramanujan, Collected Papers. Chelsea, New York, 1962.
- S. Ramanujan, Highly composite numbers. Annotated and with a foreword by J.-L. Nicolas and G. Robin. Ramanujan J. 1 (1997), 119–153. Zbl0917.11043MR1606180
- G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann. J. Math. Pures Appl. (9) 63 (1984), 187–213. Zbl0516.10036MR774171
- J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers. Illinois J. Math. 6 (1962), 64–94. Zbl0122.05001MR137689
- G. Tenenbaum, Introduction to analytic and probabilistic number theory. Cambridge Studies in Advanced Mathematics 46, Cambridge University Press, Cambridge, 1995. Zbl0831.11001MR1342300
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.