The sharp-interface approach for fluids with phase change: Riemann problems and ghost fluid techniques

Christian Merkle; Christian Rohde

ESAIM: Mathematical Modelling and Numerical Analysis (2007)

  • Volume: 41, Issue: 6, page 1089-1123
  • ISSN: 0764-583X

Abstract

top

Systems of mixed hyperbolic-elliptic conservation laws can serve as models for the evolution of a liquid-vapor fluid with possible sharp dynamical phase changes. We focus on the equations of ideal hydrodynamics in the isothermal case and introduce a thermodynamically consistent solution of the Riemann problem in one space dimension. This result is the basis for an algorithm of ghost fluid type to solve the sharp-interface model numerically. In particular the approach allows to resolve phase transitions sharply, i.e., without artificial smearing in the physically irrelevant elliptic region. Numerical experiments demonstrate the reliability of the method.

How to cite

top

Merkle, Christian, and Rohde, Christian. "The sharp-interface approach for fluids with phase change: Riemann problems and ghost fluid techniques." ESAIM: Mathematical Modelling and Numerical Analysis 41.6 (2007): 1089-1123. <http://eudml.org/doc/250027>.

@article{Merkle2007,
abstract = {
Systems of mixed hyperbolic-elliptic conservation laws can serve as models for the evolution of a liquid-vapor fluid with possible sharp dynamical phase changes. We focus on the equations of ideal hydrodynamics in the isothermal case and introduce a thermodynamically consistent solution of the Riemann problem in one space dimension. This result is the basis for an algorithm of ghost fluid type to solve the sharp-interface model numerically. In particular the approach allows to resolve phase transitions sharply, i.e., without artificial smearing in the physically irrelevant elliptic region. Numerical experiments demonstrate the reliability of the method. },
author = {Merkle, Christian, Rohde, Christian},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Dynamical phase transitions in compressible media; van-der-Waals pressure; kinetic relations; Riemann solver; ghost fluid approach.; dynamical phase transitions in compressible media; van-der-Waals pressure; ghost fluid approach},
language = {eng},
month = {12},
number = {6},
pages = {1089-1123},
publisher = {EDP Sciences},
title = {The sharp-interface approach for fluids with phase change: Riemann problems and ghost fluid techniques},
url = {http://eudml.org/doc/250027},
volume = {41},
year = {2007},
}

TY - JOUR
AU - Merkle, Christian
AU - Rohde, Christian
TI - The sharp-interface approach for fluids with phase change: Riemann problems and ghost fluid techniques
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2007/12//
PB - EDP Sciences
VL - 41
IS - 6
SP - 1089
EP - 1123
AB - 
Systems of mixed hyperbolic-elliptic conservation laws can serve as models for the evolution of a liquid-vapor fluid with possible sharp dynamical phase changes. We focus on the equations of ideal hydrodynamics in the isothermal case and introduce a thermodynamically consistent solution of the Riemann problem in one space dimension. This result is the basis for an algorithm of ghost fluid type to solve the sharp-interface model numerically. In particular the approach allows to resolve phase transitions sharply, i.e., without artificial smearing in the physically irrelevant elliptic region. Numerical experiments demonstrate the reliability of the method.
LA - eng
KW - Dynamical phase transitions in compressible media; van-der-Waals pressure; kinetic relations; Riemann solver; ghost fluid approach.; dynamical phase transitions in compressible media; van-der-Waals pressure; ghost fluid approach
UR - http://eudml.org/doc/250027
ER -

References

top
  1. R. Abeyaratne and J. Knowles, Kinetic relations and the propagation of phase boundaries in solids. Arch. Ration. Mech. Anal.114 (1991) 119–154.  
  2. R. Abgrall and S. Karni, Compressible multifluid flows. J. Comput. Phys.169 (2001) 594–623.  
  3. R. Abgrall and R. Saurel, Discrete equations for physical and numerical compressible multiphase mixtures. J. Comput. Phys.186 (2003) 361–396.  
  4. T.D. Aslam, A level set algorithm for tracking discontinuities in hyperbolic conservation laws II: Systems of equations. J. Sci. Comput.19 (2003) 37–62.  
  5. N. Bedjaoui and P.G. LeFloch, Diffusive-dispersive travelling waves and kinetic relations. II. A hyperbolic-elliptic model of phase-transition dynamics. Proc. Roy. Soc. Edinburgh Sect. A132A (2002) 1–21.  
  6. S. Benzoni-Gavage, Stability of multi-dimensional phase transitions in a van der Waals fluid. Nonlinear Anal., Theory Methods Appl.31 (1998) 243–263.  
  7. C. Chalons, Transport-Equilibrium Schemes for Computing Nonclassical Shocks. I. Scalar Conservation Laws. Preprint, Laboratoire Jacques-Louis Lions (2005).  
  8. C. Chalons and P.G. LeFloch, Computing undercompressive waves with the random choice scheme. Interfaces Free Bound.5 (2003) 129–158.  
  9. R.M. Colombo and A. Corli, Continuous dependence in conservation laws with phase transitions. SIAM J. Math. Anal.31 (1999) 34–62.  
  10. R.M. Colombo and A. Corli, Stability of the Riemann semigroup with respect to the kinetic condition. Quart. Appl. Math.62 (2004) 541–551.  
  11. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der mathematischen Wisenschaften325. Springer (2000).  
  12. H. Fan and M. Slemrod, Dynamic flows with liquid/vapor phase transitions, in Handbook of mathematical fluid dynamics, Vol. I, North-Holland, Amsterdam (2002) 373–420.  
  13. R.P. Fedkiw, T. Aslam, B. Merriman and S. Osher, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys.152 (1999) 457–492.  
  14. R.P. Fedkiw, T. Aslam and S. Xu, The ghost fluid method for deflagration and detonation discontinuities. J. Comput. Phys.154 (1999) 393–427.  
  15. E. Godlewski and P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws. Appl. Math. Sci.118 Springer (1996).  
  16. E. Godlewski and N. Seguin, The Riemann problem for a simple model of phase transition. Commun. Math. Sci.4 (2006) 227–247.  
  17. B. Hayes and P.G. LeFloch, Nonclassical shocks and kinetic relations: strictly hyperbolic systems. SIAM J. Math. Anal.31 (2000) 941–991.  
  18. T.Y. Hou, P. Rosakis and P.G. LeFloch, A level-set approach to the computation of twinning and phase-transition dynamics. J. Comput. Phys.150 (1999) 302–331.  
  19. M. Kac, G.E. Uhlenbeck and P.C. Hemmer, On the van der Waals theory of the vapor-liquid equilibrium. I. Discussion of a one-dimensional model. J. Math. Phys.4 (1963) 216–228.  
  20. S. Karni and R. Abgrall, Ghost-Fluids for the Poor: A Single Fluid Algorithm for Multifluids, in Lecture Notes in Mathematics, Proceedings of the 10th International Conference on Hyperbolic problems, theory and numerics, Springer (2001) 293–302.  
  21. O. Le Métayer, J. Massoni and R. Saurel, Modelling evaporation fronts with reactive Riemann solvers. J. Comput. Phys.205 (2005) 567–610.  
  22. P.G. LeFloch, Propagating phase boundaries: Formulation of the problem and existence via the Glimm method. Arch. Ration. Mech. Anal.123 (1993) 153–197.  
  23. P.G. LeFloch, Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves. Lectures in Mathematics. ETH Zürich, Birkhäuser (2002).  
  24. P.G. LeFloch and M.D. Thanh, Nonclassical Riemann solvers and kinetic relations. II. An hyperbolic-elliptic model of phase transitions. Proc. Royal Soc. Edinburgh A131A (2001) 1–39.  
  25. P.G. LeFloch, J.M. Mercier and C. Rohde, Fully discrete, entropy conservative schemes of arbitrary order. SIAM J. Numer. Anal.40 (2002) 1968–1992.  
  26. T.G. Liu, B.C. Khoo and K.S. Yeo, Ghost fluid method for strong impacting on material interfaces. J. Comput. Phys.190 (2003) 651–681.  
  27. C. Merkle, Dynamical Phase Transitions in Compressible Media. Doctoral dissertation, Albert-Ludwigs-Universität Freiburg (2006) .  URIhttp://www.freidok.uni-freiburg.de/volltexte/2674/
  28. C. Merkle and C. Rohde, Computation of dynamical phase transitions in solids. Appl. Numer. Math.56 (2006) 1450–1463.  
  29. W. Mulder, S. Osher and J. Sethian, Computing interface motion in compressible gas dynamics. J. Comput. Phys.100 (1992) 209–228.  
  30. S. Müller and A. Voß, The Riemann problem for the Euler equations with nonconvex and nonsmooth equation of state: construction of wave curves. SIAM J. Sci. Comput.28 (1992) 651–681.  
  31. S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces. Appl. Math. Sci.153. Springer (2003).  
  32. S. Osher and J. Sethian, Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys.79 (1988) 12–49.  
  33. S. Osher and C.-W. Shu, High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal.28 (1991) 907–922.  
  34. D. Peng, B. Merriman, S. Osher, H.K. Zhao and M. Kang, A PDE-based fast local level set method. J. Comput. Phys.155 (1999) 410–438.  
  35. G. Russo and P. Smereka, A remark on computing distance functions. J. Comput. Phys.163 (2000) 51–67.  
  36. D. Serre, Systems of Conservation Laws 1. Cambridge University Press (1999).  
  37. M. Sussman, P. Smereka and S. Osher, A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys.114 (1994) 146–154.  
  38. E.F. Toro, Multi-Stage Predictor-Corrector Fluxes for Hyperbolic Equations. Technical Report NI03037-NPA Isaac Newton Institute for Mathematical Sciences (2003).  
  39. L. Truskinovsky, Kinks versus Shocks, in Shock induced transitions and phase structures in general media, Springer, New York (1993) 185–229.  
  40. L. Truskinovsky and A. Vainchtein, Explicit kinetic relation from “first principles”, in Mechanics of material forces11, Advances in Mechanics and Mathematics, P. Steinmann and G.A. Maugin (Eds.), Springer (2005) 43–50.  
  41. X. Zhong, T.Y. Hou and P.G. LeFloch, Computational method for propagating phase boundaries. J. Comput. Phys.124 (1996) 192–216.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.