Influence of bottom topography on long water waves
ESAIM: Mathematical Modelling and Numerical Analysis (2007)
- Volume: 41, Issue: 4, page 771-799
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- S. Alinhac and P. Gérard, Opérateurs pseudo-différentiels et théorème de Nash-Moser. Savoirs Actuels, InterEditions, Paris, Editions du Centre National de la Recherche Scientifique (CNRS), Meudon (1991) p. 190.
- B. Alvarez-Samaniego and D. Lannes, Large time existence for 3D water-waves and asymptotics. Technical report (), Université Bordeaux I, IMB (2007). URIhttp://fr.arxiv.org/abs/math/0702015v1
- B. Alvarez-Samaniego and D. Lannes, A Nash-Moser theorem for singular evolution equations. Application to the Serre and Green-Naghdi equations. Preprint (), Indiana University Mathematical Journal (2007) (to appear). URIhttp://arxiv.org/abs/math.AP/0701681v1
- T.B. Benjamin, J.L. Bona and J.J. Mahony, Model equations for long waves in nonlinear dispersive systems. Philos. Trans. Roy. Soc. London Ser. A272 (1972) 47–78.
- J.L. Bona and M. Chen, A Boussinesq system for two-way propagation of nonlinear dispersive waves. Physica D116 (2004) 191–224.
- J.L. Bona, M. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I: Derivation and linear theory. J. Nonlinear Sci.12 (2002) 283–318.
- J.L. Bona, M. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. II: Nonlinear theory. Nonlinearity17 (2004) 925–952.
- J.L. Bona, T. Colin and D. Lannes, Long waves approximations for water waves. Arch. Rational Mech. Anal.178 (2005) 373–410.
- M.J. Boussinesq, Théorie de l'intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire. C.R. Acad. Sci. Paris Sér. A-B72 (1871) 755–759.
- M. Chen, Equations for bi-directional waves over an uneven bottom. Math. Comput. Simulation62 (2003) 3–9.
- W. Craig, An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits. Comm. Partial Differential Equations10 (1985) 787–1003.
- M.W. Dingemans, Water Wave Propagation over uneven bottoms. Part I: Linear Wave Propagation. Adanced Series on Ocean Engineering13. World Scientific (1997).
- M.W. Dingemans, Water Wave Propagation over uneven bottoms. Part II: Non-linear Wave Propagation. Adanced Series on Ocean Engineering13. World Scientific (1997).
- A.E. Green and P.M. Naghdi, A derivation of equations for wave propagation in water of variable depth. J. Fluid Mech.78 (1976) 237–246.
- T. Iguchi, A long wave approximation for capillary-gravity waves and an effect of the bottom. Preprint (2005).
- T. Iguchi, A mathematical justification of the forced Korteweg-de Vries equation for capillary-gravity waves. Kyushu J. Math.60 (2006) 267–303.
- J.T. Kirby, Gravity Waves in Water of Finite Depth, Advances in Fluid Mechanics 10, in J.N. Hunt Ed., Computational Mechanics Publications (1997) 55–125.
- D. Lannes, Sur le caractère bien posé des équations d'Euler avec surface libre. Séminaire EDP de l'École Polytechnique (2004), Exposé no. XIV.
- D. Lannes, Well-posedness of the water-waves equations. J. Amer. Math. Soc.18 (2005) 605–654.
- D. Lannes and J.C. Saut, Weakly transverse Boussinesq systems and the Kadomtsev–Petviashvili approximation. Nonlinearity19 (2006) 2853–2875.
- P.A. Madsen, R. Murray and O.R. Sorensen, A new form of the Boussinesq equations with improved linear dispersion characteristics (Part 1). Coastal Eng.15 (1991) 371–388.
- G. Métivier, Small Viscosity and Boundary Layer Methods: Theory, Stability Analysis, and Applications. Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, Boston-Basel-Berlin (2004).
- D.P. Nicholls and F. Reitich, A new approach to analyticity of Dirichlet-Neumann operators. Proc. Royal Soc. Edinburgh Sect. A131 (2001) 1411–1433.
- V.I. Nalimov, The Cauchy-Poisson problem. (Russian) Dinamika Splošn. Sredy Vyp. 18, Dinamika Zidkost. so Svobod. Granicami 254 (1974) 104–210.
- O. Nwogu, Alternative form of Boussinesq equations for nearshore wave propagation. J. Waterw. Port Coastal Eng. ASCE119 (1993) 618–638.
- D.H. Peregrine, Long waves on a beach. J. Fluid Mech.27 (1967) 815–827.
- G. Schneider and C.E. Wayne, The long-wave limit for the water-wave problem. I. The case of zero surface tension. Comm. Pure Appl. Math.162 (2002) 247–285.
- G. Wei and J.T. Kirby, A time-dependent numerical code for extended Boussinesq equations. J. Waterw. Port Coastal Ocean Engineering120 (1995) 251–261.
- G. Wei, J.T. Kirby, S.T. Grilli and R. Subramanya, A fully nonlinear Boussinesq model for surface waves. I. Highly nonlinear, unsteady waves. J. Fluid Mechanics294 (1995) 71–92.
- S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math.130 (1997) 39–72.
- S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Amer. Math. Soc.12 (1999) 445–495.
- H. Yosihara, Gravity waves on the free surface of an incompressible perfect fluid of finite depth. Publ. Res. Inst. Math. Sci.18 (1982) 49–96.