An algorithm for deciding if a polyomino tiles the plane
RAIRO - Theoretical Informatics and Applications (2007)
- Volume: 41, Issue: 2, page 147-155
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topReferences
top- E. Barcucci, A. Del Lungo, E. Pergola and R. Pinzani, ECO: a methodology for the Enumeration of Combinatorial Objects. J. Difference Equ. Appl.5 (1999) 435–490.
- D. Beauquier and M. Nivat, On translating one polyomino to tile the plane. Discrete Comput. Geom.6 (1991) 575–592.
- M. Bousquet-Mélou, A method for the enumeration of various classes of column-convex polygons. Discrete Math.154 (1996) 1–25.
- M. Bousquet-Mélou. Habilitation. LABRI Université de Bordeaux 1 (1996).
- S.J. Chang and K.Y. Lin. Rigorous results for the number of convex polygons on the square and honeycomb lattices. J. Phys. A21 (1988) 2635–2642.
- T.H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to algorithms. Chapt. 34, MIT Press (1990) 853–885.
- A. Daurat and M. Nivat. Salient and Reentrant Points of Discrete Sets, in Proc. of the nineth International Workshop on Combinatorial Image Analysis (IWCIA 2003), volume 12 of Electronic Notes in Discrete Mathematics. Elsevier (2003).
- A. Del Lungo, E. Duchi, A. Frosini and S. Rinaldi, Enumeration of convex polyominoes using the ECO method, in Discrete Models for Complex Systems, DMCS'03, edited by M. Morvan and É. Rémila, Discrete Mathematics and Theoretical Computer Science Proceedings AB, 103–116.
- M. Delest and X. Viennot, Algebraic languages and polyominoes enumeration. Theoret. Comput. Sci.34 (1984) 169–206.
- I. Gambini, A Method for Cutting Squares Into Distinct Squares. Discrete Appl. Math.98 (1999) 65–80.
- S.W. Golomb. Polyominoes, Princeton science library (1994).
- P. Hubert and L. Vuillon. Complexity of cutting words on regular tilings. Eur. J. Combin.28 (2007) 429–438.
- D.E. Knuth, J.H. Morris and V.R. Pratt. Fast pattern matching in strings. SIAM J. Comput.6 (1997) 323–350.
- P. Leroux, E. Rassart and A. Robitaille, Enumeration of symmetry classes of convex polyminoes in the square lattice. Adv. Appl. Math.21 (1998) 343–380.
- P. Leroux and E. Rassart, Enumeration of symmetry classes of parallelogram polyminoes. Ann. Sci. Math. Québec25 (2001) 53–72.