Reflected backward stochastic differential equations with two RCLL barriers
Jean-Pierre Lepeltier; Mingyu Xu
ESAIM: Probability and Statistics (2007)
- Volume: 11, page 3-22
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- M. Alario-Nazaret, Jeux de Dynkin. Ph.D. dissertation, Univ. Franche-Comté, Besançon (1982).
- M. Alario-Nazaret, J.P. Lepeltier and B. Marchal, Dynkin games. Lect. Notes Control Inform. Sci.43 (1982) 23–42.
- J.M. Bismut, Sur un problème de Dynkin. Z.Wahrsch. Verw. Gebiete39 (1977) 31–53.
- J. Cvitanic and I. Karatzas, Backward Stochastic Differential Equations with Reflection and Dynkin Games. Ann. Probab.24 (1996) 2024–2056.
- N. El Karoui, Les aspects probabilistes du contrôle stochastique, in P.L. Hennequin Ed., Ecole d'été de Saint-Flour. Lect. Notes Math.876 (1979) 73–238.
- N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng and M.C. Quenez, Reflected Solutions of Backward SDE and Related Obstacle Problems for PDEs. Ann. Probab.25 (1997) 702–737.
- S. Hamadène, Reflected BSDE's with Discontinuous Barrier and Application. Stochastics and Stochastic Reports74 (2002) 571–596.
- J.P. Lepeltier and J. San Martín, Backward SDE's with two barriers and continuous coefficient. An existence result. J. Appl. Probab.41 (2004) 162–175.
- J.P. Lepeltier and M. Xu, Penalization method for Reflected Backward Stochastic Differential Equations with one RCLL barrier. Statistics Probab. Lett.75 (2005) 58–66.
- E. Pardoux and S. Peng, Adapted solutions of Backward Stochastic Differential Equations. Systems Control Lett.14 (1990) 51–61.
- S. Peng and M. Xu, Smallestg-Supermartingales and related Reflected BSDEs. Annales of I.H.P.41 (2005) 605–630.