Pricing rules under asymmetric information

Shigeyoshi Ogawa; Monique Pontier

ESAIM: Probability and Statistics (2007)

  • Volume: 11, page 80-88
  • ISSN: 1292-8100

Abstract

top
We consider an extension of the Kyle and Back's model [Back, Rev. Finance Stud.5 (1992) 387–409; Kyle, Econometrica35 (1985) 1315–1335], meaning a model for the market with a continuous time risky asset and asymmetrical information. There are three financial agents: the market maker, an insider trader (who knows a random variable V which will be revealed at final time) and a non informed agent. Here we assume that the non informed agent is strategic, namely he/she uses a utility function to optimize his/her strategy. Optimal control theory is applied to obtain a pricing rule and to prove the existence of an equilibrium price when the insider trader and the non informed agent are risk-neutral. We will show that if such an equilibrium exists, then the non informed agent's optimal strategy is to do nothing, in other words to be non strategic.

How to cite

top

Ogawa, Shigeyoshi, and Pontier, Monique. "Pricing rules under asymmetric information." ESAIM: Probability and Statistics 11 (2007): 80-88. <http://eudml.org/doc/250105>.

@article{Ogawa2007,
abstract = { We consider an extension of the Kyle and Back's model [Back, Rev. Finance Stud.5 (1992) 387–409; Kyle, Econometrica35 (1985) 1315–1335], meaning a model for the market with a continuous time risky asset and asymmetrical information. There are three financial agents: the market maker, an insider trader (who knows a random variable V which will be revealed at final time) and a non informed agent. Here we assume that the non informed agent is strategic, namely he/she uses a utility function to optimize his/her strategy. Optimal control theory is applied to obtain a pricing rule and to prove the existence of an equilibrium price when the insider trader and the non informed agent are risk-neutral. We will show that if such an equilibrium exists, then the non informed agent's optimal strategy is to do nothing, in other words to be non strategic. },
author = {Ogawa, Shigeyoshi, Pontier, Monique},
journal = {ESAIM: Probability and Statistics},
keywords = {Equilibrium; optimal control; asymmetric information.; equilibrium; asymmetric information},
language = {eng},
month = {3},
pages = {80-88},
publisher = {EDP Sciences},
title = {Pricing rules under asymmetric information},
url = {http://eudml.org/doc/250105},
volume = {11},
year = {2007},
}

TY - JOUR
AU - Ogawa, Shigeyoshi
AU - Pontier, Monique
TI - Pricing rules under asymmetric information
JO - ESAIM: Probability and Statistics
DA - 2007/3//
PB - EDP Sciences
VL - 11
SP - 80
EP - 88
AB - We consider an extension of the Kyle and Back's model [Back, Rev. Finance Stud.5 (1992) 387–409; Kyle, Econometrica35 (1985) 1315–1335], meaning a model for the market with a continuous time risky asset and asymmetrical information. There are three financial agents: the market maker, an insider trader (who knows a random variable V which will be revealed at final time) and a non informed agent. Here we assume that the non informed agent is strategic, namely he/she uses a utility function to optimize his/her strategy. Optimal control theory is applied to obtain a pricing rule and to prove the existence of an equilibrium price when the insider trader and the non informed agent are risk-neutral. We will show that if such an equilibrium exists, then the non informed agent's optimal strategy is to do nothing, in other words to be non strategic.
LA - eng
KW - Equilibrium; optimal control; asymmetric information.; equilibrium; asymmetric information
UR - http://eudml.org/doc/250105
ER -

References

top
  1. J. Amendinger, Martingale representation theorems for initially enlarged filtrations. Stoch. Proc. Appl.89 (2000) 101–116.  
  2. J. Amendinger, P. Imkeller and M. Schweizer, Additional logarithmic utility of an insider. Stoch. Proc. Appl.75 (1998) 263–286.  
  3. K. Back, Insider trading in continuous time. Rev. Financial Stud.5 (1992) 387–409.  
  4. B. Biais, T. Mariotti, G. Plantin and J.C. Rochet, Dynamic security design. Rev. Economic Stud. to appear.  
  5. K.H. Cho and N. EL Karoui, Insider trading and nonlinear equilibria:uniqueness: single auction case. Annales d'économie et de statistique60 (2000) 21–41.  
  6. K.H. Cho, Continuous auctions and insider trading: uniqueness and risk aversion. Finance and Stochastics7 (2003) 47–71.  
  7. M. Chaleyat-Maurel and T. Jeulin, Grossissement gaussien de la filtration brownienne, in Séminaire de Calcul Stochastique 1982-83, Paris, Lect. Notes Math.1118 (1985) 59–109.  
  8. N. El Karoui, Les aspects probabilistes du contrôle stochastique, in Ecole d'été de Saint Flour 1979, Lect. Notes Math.872 (1981) 73–238.  
  9. H. Föllmer and P. Imkeller, Anticipation cancelled by a Girsanov transformation: a paradox on Wiener space. Ann. Inst. Henri Poincaré29 (1993) 569–586.  
  10. W.H. Fleming and R.W. Rishel, Deterministic and Stochastic Optimal Control. Springer, Berlin (1975).  
  11. A. Grorud and M. Pontier, Comment détecter le délit d'initié ? CRAS, Sér. 1324 (1997) 1137–1142.  
  12. A. Grorud and M. Pontier, Insider trading in a continuous time market model. IJTAF. 1 (1998) 331–347.  
  13. A. Grorud and M. Pontier, Probabilité neutre au risque et asymétrie d'information. CRAS, Sér. 1329 (1999) 1009–1014.  
  14. A. Grorud and M. Pontier, Asymmetrical information and incomplete markets. IJTAF. 4 (2001) 285–302.  
  15. C. Hillairet, Existence of an equilibrium with discontinuous prices, asymmetric information and non trivial initial σ-fields. Math. Finance15 (2005) 99–117.  
  16. J. Jacod, Grossissement initial, Hypothèse H' et Théorème de Girsanov, in Séminaire de Calcul Stochastique 1982–83, Paris, Lect. Notes Math.1118 (1985) 15–35.  
  17. T. Jeulin, Semi-martingales et grossissement de filtration. Springer-Verlag (1980).  
  18. A.S. Kyle, Continuous auctions and insider trading. Econometrica53 (1985) 1315–1335.  
  19. I. Karatzas and I. Pikovsky, Anticipative portfolio optimization. Adv. Appl. Probab.28 (1996) 1095–1122.  
  20. G. Lasserre, Quelques modèles d'équilibre avec asymétrie d'information. Thèse soutenue à l'université de Paris VII, le 16 décembre 2003.  
  21. G. Lasserre, Asymmetric information and imperfect competition in a continuous time multivariate security model, Finance and Stochastics8 (2004) 285–309.  
  22. P. Protter, Stochastic Integration and Differential Equations. Springer-Verlag (1990).  
  23. M. Schweizer, On the minimal martingale measure and the Föllmer-Schweizer decomposition. Stochastic Anal. Appl.13 (1995) 573–599.  
  24. M. Yor, Grossissement de filtrations et absolue continuité de noyaux, in Séminaire de Calcul Stochastique 1982-83, Paris, Lect Notes Math.1118 (1985) 6–14.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.