A discrete-time approximation technique for the time-cost trade-off in PERT networks
Amir Azaron; Masatoshi Sakawa; Reza Tavakkoli-Moghaddam; Nima Safaei
RAIRO - Operations Research (2007)
- Volume: 41, Issue: 1, page 61-81
- ISSN: 0399-0559
Access Full Article
topAbstract
topHow to cite
topReferences
top- A. Azaron, C. Perkgoz and M. Sakawa, A Genetic Algorithm Approach for the Time-Cost Trade-Off in PERT Networks. Appl. Math. Comput.168 (2005) 1317–1339.
- A. Azaron, H. Katagiri, M. Sakawa, K. Kato and A. Memariani, A Multi-objective Resource Allocation Problem in PERT Networks. Eur. J. Oper. Res.172 (2006) 838–854.
- E. Berman, Resource Allocation in a PERT Network Under Continuous Activity Time-cost Function. Management Sci.10 (1964) 734–745.
- J. Burt and M. Garman, Conditional Monte Carlo: A Simulation Technique for Stochastic Network Analysis. Management Sci.18 (1977) 207–217.
- A. Charnes, W. Cooper and G. Thompson, Critical Path Analysis via Chance Constrained and Stochastic Programming. Oper. Res.12 (1964) 460–470.
- D. Chau, W. Chan and K. Govindan, A Time-Cost Trade-Off Model with Resource Consideration Using Genetic Algorithm. Civil Engineering Systems14 (1997) 291–311.
- C. Clingen, A Modification of Fulkerson's Algorithm for Expected Duration of a PERT Project when Activities Have Continuous d. f. Oper. Res.12 (1964) 629–632.
- E. Demeulemeester, W. Herroelen and S. Elmaghraby, Optimal Procedures for the Discrete Time-Cost Trade-Off Problem in Project Networks. Research Report, Department of Applied Economics, Katholieke Universiteit Leuven, Leuven, Belgium (1993).
- S. Elmaghraby, On the Expected Duration of PERT Type Networks. Management Sci.13 (1967) 299–306.
- S. Elmaghraby, Resource Allocation via Dynamic Programming in Activity Networks. Eur. J. Oper. Res.64 (1993) 199–245.
- J. Falk and J. Horowitz, Critical Path Problem with Concave Cost Curves. Management Sci.19 (1972) 446–455.
- S. Fatemi Ghomi and S. Hashemin, A New Analytical Algorithm and Generation of Gaussian Quadrature Formula for Stochastic Network. Eur. J. Oper. Res.114 (1999) 610–625.
- S. Fatemi Ghomi and M. Rabbani, A New Structural Mechanism for Reducibility of Stochastic PERT Networks. Eur. J. Oper. Res.145 (2003) 394–402.
- C. Feng, L. Liu, and S. Burns, Using Genetic Algorithms to Solve Construction Time-Cost Trade-Off Problems. J. Construction Engineering and Management, ASCE11 (1997) 184–189.
- G. Fishman, Estimating Critical Path and Arc Probabilities in Stochastic Activity Networks. Naval Res. Logistic Quarterly32 (1985) 249–261.
- D. Fulkerson, A Network Flow Computation for Project Cost Curves. Management Sci.7 (1961) 167–178.
- D. Fulkerson, Expected Critical Path Lengths in PERT Networks. Oper. Res.10 (1962) 808–817.
- M. Garman, More on Conditioned Sampling in the Simulation of Stochastic Networks. Management Sci.19 (1972) 90–95.
- D. Golenko-Ginzburg and A. Gonik, A Heuristic for Network Project Scheduling with Random Activity Durations Depending on the Resource Reallocation. Inter. J. Production Economics55 (1998) 149–162.
- K. Gutzmann, Combinatorial Optimization Using a Continuous State Boltzmann Machine. Proceedings of IEEE First Int. Conf. Neural Networks, Vol. III, San Diego, CA (1987) 721–728.
- J. Kelly, Critical Path Planning and Scheduling: Mathematical Basis. Oper. Res.9 (1961) 296–320.
- S. Kirkpatrick, J. Gelatt and M. Vecchi, Optimization by Simulated Annealing. Science220 (1983) 671–680.
- C. Koulamas, S. Antony and R. Jaen, A Survey of Simulated Annealing Applications to Operations Research Problems. Omega22 (1994) 41–56.
- V. Kulkarni and V. Adlakha, Markov and Markov-Regenerative PERT Networks. Oper. Res.34 (1986) 769–781.
- L. Lamberson and R. Hocking, Optimum Time Compression in Project Scheduling. Management Sci.16 (1970) 597–606.
- Z. Laslo, Activity Time-Cost Tradeoffs under Time and Cost Chance Constraints. Comput. Industrial Engineering44 (2003) 365–384.
- J. Martin, Distribution of the Time Through a Directed Acyclic Network. Oper. Res.13 (1965) 46–66.
- M. Neuts, Matrix-geometric Solutions in Stochastic Models. Johns Hopkins University Press, Baltimore, MD (1981).
- C. Perry, I. Creig, Estimating the Mean and Variance of Subjective Distributions in PERT and Decision Analysis. Management Sci.21 (1975) 1477–1480.
- P. Pontrandolfo, Project Duration in Stochastic Networks by the PERT-Path Technique. Inter. J. Project Management18 (2000) 215–222.
- P. Robillard, Expected Completion Time in PERT Networks. Oper. Res.24, (1976) 177–182.
- D. Robinson, A Dynamic Programming Solution to Cost-Time Trade-Off for CPM. Management Sci.22 (1965) 158–166.
- S. Sethi, and G. Thompson, Optimal Control Theory. Martinus Nijhoff Publishing, Boston (1981).
- C. Sigal, A. Pritsker and J. Solberg, The Use of Cutsets in Monte-Carlo Analysis of Stochastic Networks. Mathematical Simulation21 (1979) 376–384.
- C. Schmit, and I. Grossmann, The Exact Overall Time Distribution of a Project with Uncertain Task Durations. Eur. J. Oper. Res.126 (2000) 614–636.
- L. Tavares, Optimal Resource Profiles for Program Scheduling. Eur. J. Oper. Res.29 (1987) 83–90.
- J. Weglarz, Project Scheduling with Continuously Divisible Doubly Constrained Resources. Management Sci.27 (1981) 1040–1053.