top
A stochastic “Fubini” lemma and an approximation theorem for
integrals on the plane are used to produce a simulation algorithm
for an anisotropic fractional Brownian sheet. The convergence rate
is given. These results are valuable for any value of the Hurst
parameters Finally, the
approximation process
is iterative on the quarter plane
A sample of such simulations can be used to test estimators
of the parameters αi,i = 1,2.
Coutin, Laure, and Pontier, Monique. "Approximation of the fractional Brownian sheet VIA Ornstein-Uhlenbeck sheet." ESAIM: Probability and Statistics 11 (2007): 115-146. <http://eudml.org/doc/250120>.
@article{Coutin2007, abstract = {
A stochastic “Fubini” lemma and an approximation theorem for
integrals on the plane are used to produce a simulation algorithm
for an anisotropic fractional Brownian sheet. The convergence rate
is given. These results are valuable for any value of the Hurst
parameters $(\alpha_1,\alpha_2)\in ]0,1[^2,\alpha_i\neq\frac\{1\}\{2\}.$ Finally, the
approximation process
is iterative on the quarter plane $\mathbb \{R\}_+^2.$
A sample of such simulations can be used to test estimators
of the parameters αi,i = 1,2.
}, author = {Coutin, Laure, Pontier, Monique}, journal = {ESAIM: Probability and Statistics}, keywords = {random field simulation and approximation; anisotropic
fractional Brownian sheet.; anisotropic fractional Brownian sheet}, language = {eng}, month = {3}, pages = {115-146}, publisher = {EDP Sciences}, title = {Approximation of the fractional Brownian sheet VIA Ornstein-Uhlenbeck sheet}, url = {http://eudml.org/doc/250120}, volume = {11}, year = {2007}, }
TY - JOUR AU - Coutin, Laure AU - Pontier, Monique TI - Approximation of the fractional Brownian sheet VIA Ornstein-Uhlenbeck sheet JO - ESAIM: Probability and Statistics DA - 2007/3// PB - EDP Sciences VL - 11 SP - 115 EP - 146 AB -
A stochastic “Fubini” lemma and an approximation theorem for
integrals on the plane are used to produce a simulation algorithm
for an anisotropic fractional Brownian sheet. The convergence rate
is given. These results are valuable for any value of the Hurst
parameters $(\alpha_1,\alpha_2)\in ]0,1[^2,\alpha_i\neq\frac{1}{2}.$ Finally, the
approximation process
is iterative on the quarter plane $\mathbb {R}_+^2.$
A sample of such simulations can be used to test estimators
of the parameters αi,i = 1,2.
LA - eng KW - random field simulation and approximation; anisotropic
fractional Brownian sheet.; anisotropic fractional Brownian sheet UR - http://eudml.org/doc/250120 ER -
J. Audounet, G. Montseny and B. Mbodje, A simple viscoelastic damper model — application to a vibrating string. Analysis and optimization of systems: state and frequency domain approaches for infinite-dimensional systems (Sophia-Antipolis, 1992), Lect. Notes Control Inform. Sci.185, Springer, Berlin (1993) 436–446.
A. Ayache, S. Léger and M. Pontier, Les ondelettes à la conquête du drap brownien fractionnaire. CRAS série I335 (2002) 1063–1068.
A. Ayache and M. Taqqu, Rate optimality of wavelet series approximations of fractional Brownian motion. J. Fourier Anal. Appl.9 (2003) 451–471.
J.M. Bardet, G. Lang, G. Oppenheim, A. Philippe and M. Taqqu, Generators of long-range dependent processes: a survey, in Long-Range dependence, Theory and Applications. Birkhauser (2003) 579–623.
O.E. Barndorff-Nielsen and N. Shephard, Non Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics. J.R. Statistical SocietyB 63 (2001) 167–241.
S. Bernam, Gaussian processes with stationary increments local times and sample function properties. Ann. Math. Statist.41 (1970) 1260–1272.
P. Carmona, L. Coutin and G. Montseny, Approximation of some Gaussian processes. Stat. Inference of Stoch. Processes3 (2000) 161–171.
S. Cohen, Champs localement auto-similaires, dans Lois d'échelle, fractales et ondelettes 1, P. Abry, P. Goncalvès, J. Lévy Véhel, Eds. (2001).
X.M. Fernique, Régularité des trajectoires des fonctions aléatoires gaussiennes, in École d'été de probabilités de saint-Flour L. N. in Math480 (1974) 1–96.