The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Approximation of the fractional Brownian sheet VIA Ornstein-Uhlenbeck sheet

Laure Coutin; Monique Pontier

ESAIM: Probability and Statistics (2007)

  • Volume: 11, page 115-146
  • ISSN: 1292-8100

Abstract

top
A stochastic “Fubini” lemma and an approximation theorem for integrals on the plane are used to produce a simulation algorithm for an anisotropic fractional Brownian sheet. The convergence rate is given. These results are valuable for any value of the Hurst parameters Finally, the approximation process is iterative on the quarter plane A sample of such simulations can be used to test estimators of the parameters αi,i = 1,2.

How to cite

top

Coutin, Laure, and Pontier, Monique. "Approximation of the fractional Brownian sheet VIA Ornstein-Uhlenbeck sheet." ESAIM: Probability and Statistics 11 (2007): 115-146. <http://eudml.org/doc/250120>.

@article{Coutin2007,
abstract = { A stochastic “Fubini” lemma and an approximation theorem for integrals on the plane are used to produce a simulation algorithm for an anisotropic fractional Brownian sheet. The convergence rate is given. These results are valuable for any value of the Hurst parameters $(\alpha_1,\alpha_2)\in ]0,1[^2,\alpha_i\neq\frac\{1\}\{2\}.$ Finally, the approximation process is iterative on the quarter plane $\mathbb \{R\}_+^2.$ A sample of such simulations can be used to test estimators of the parameters αi,i = 1,2. },
author = {Coutin, Laure, Pontier, Monique},
journal = {ESAIM: Probability and Statistics},
keywords = {random field simulation and approximation; anisotropic fractional Brownian sheet.; anisotropic fractional Brownian sheet},
language = {eng},
month = {3},
pages = {115-146},
publisher = {EDP Sciences},
title = {Approximation of the fractional Brownian sheet VIA Ornstein-Uhlenbeck sheet},
url = {http://eudml.org/doc/250120},
volume = {11},
year = {2007},
}

TY - JOUR
AU - Coutin, Laure
AU - Pontier, Monique
TI - Approximation of the fractional Brownian sheet VIA Ornstein-Uhlenbeck sheet
JO - ESAIM: Probability and Statistics
DA - 2007/3//
PB - EDP Sciences
VL - 11
SP - 115
EP - 146
AB - A stochastic “Fubini” lemma and an approximation theorem for integrals on the plane are used to produce a simulation algorithm for an anisotropic fractional Brownian sheet. The convergence rate is given. These results are valuable for any value of the Hurst parameters $(\alpha_1,\alpha_2)\in ]0,1[^2,\alpha_i\neq\frac{1}{2}.$ Finally, the approximation process is iterative on the quarter plane $\mathbb {R}_+^2.$ A sample of such simulations can be used to test estimators of the parameters αi,i = 1,2.
LA - eng
KW - random field simulation and approximation; anisotropic fractional Brownian sheet.; anisotropic fractional Brownian sheet
UR - http://eudml.org/doc/250120
ER -

References

top
  1. J. Audounet, G. Montseny and B. Mbodje, A simple viscoelastic damper model — application to a vibrating string. Analysis and optimization of systems: state and frequency domain approaches for infinite-dimensional systems (Sophia-Antipolis, 1992), Lect. Notes Control Inform. Sci.185, Springer, Berlin (1993) 436–446.  
  2. A. Ayache, S. Léger and M. Pontier, Les ondelettes à la conquête du drap brownien fractionnaire. CRAS série I335 (2002) 1063–1068.  
  3. A. Ayache and M. Taqqu, Rate optimality of wavelet series approximations of fractional Brownian motion. J. Fourier Anal. Appl.9 (2003) 451–471.  
  4. J.M. Bardet, G. Lang, G. Oppenheim, A. Philippe and M. Taqqu, Generators of long-range dependent processes: a survey, in Long-Range dependence, Theory and Applications. Birkhauser (2003) 579–623.  
  5. O.E. Barndorff-Nielsen and N. Shephard, Non Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics. J.R. Statistical SocietyB 63 (2001) 167–241.  
  6. S. Bernam, Gaussian processes with stationary increments local times and sample function properties. Ann. Math. Statist.41 (1970) 1260–1272.  
  7. P. Carmona, L. Coutin and G. Montseny, Approximation of some Gaussian processes. Stat. Inference of Stoch. Processes3 (2000) 161–171.  
  8. S. Cohen, Champs localement auto-similaires, dans Lois d'échelle, fractales et ondelettes 1, P. Abry, P. Goncalvès, J. Lévy Véhel, Eds. (2001).  
  9. X.M. Fernique, Régularité des trajectoires des fonctions aléatoires gaussiennes, in École d'été de probabilités de saint-Flour L. N. in Math480 (1974) 1–96.  
  10. E. Igloi and G. Terdik, Long-range dependence through gamma-mixed Ornstein-Uhlenbeck process. E.J.P.4 (1999) 1–33.  
  11. N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam (1981).  
  12. I. Karatzas and S.E. Schreve, Brownian Motion and Stochastic Calculus. Springer, 2d edition (1999).  
  13. S. Léger, Drap brownien fractionnaire, thèse à l'Université d'Orléans (2000).  
  14. S. Léger and M. Pontier, Drap brownien fractionnaire, in C.R.A.S., Paris, série I329 (1999) 893–898.  
  15. Y. Meyer, F. Sellan and M. Taqqu, Wavelets, generalized white noise and fractional integration: the synthesis of fractional Brownian motion. Journal of Fourier Analysis and Applications5 (1999) 465–494.  
  16. D. Revuz and M. Yor, Continuous Martingales and Brownian Motion. Springer-Verlag, Berlin (1990).  
  17. G. Samorodnitsky and M. Taqqu, Stable Non-Gaussian random Processes, Stochastic Modeling. Chapman and Hall, New York (1994).  
  18. D.W. Stroock, A Concise Introduction to the Theory of Integration Stochastic Integration. Birkhauser, 2d edition (1994).  
  19. A.T.A. Wood and G. Chan, A Simulation of stationary Gaussian processes in [0,1]d. J. Comput. Graphical Statist.3–4 (1994) 409–432.  

NotesEmbed ?

top

You must be logged in to post comments.