Approximation of the fractional Brownian sheet VIA Ornstein-Uhlenbeck sheet
ESAIM: Probability and Statistics (2007)
- Volume: 11, page 115-146
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topCoutin, Laure, and Pontier, Monique. "Approximation of the fractional Brownian sheet VIA Ornstein-Uhlenbeck sheet." ESAIM: Probability and Statistics 11 (2007): 115-146. <http://eudml.org/doc/250120>.
@article{Coutin2007,
abstract = {
A stochastic “Fubini” lemma and an approximation theorem for
integrals on the plane are used to produce a simulation algorithm
for an anisotropic fractional Brownian sheet. The convergence rate
is given. These results are valuable for any value of the Hurst
parameters $(\alpha_1,\alpha_2)\in ]0,1[^2,\alpha_i\neq\frac\{1\}\{2\}.$ Finally, the
approximation process
is iterative on the quarter plane $\mathbb \{R\}_+^2.$
A sample of such simulations can be used to test estimators
of the parameters αi,i = 1,2.
},
author = {Coutin, Laure, Pontier, Monique},
journal = {ESAIM: Probability and Statistics},
keywords = {random field simulation and approximation; anisotropic
fractional Brownian sheet.; anisotropic fractional Brownian sheet},
language = {eng},
month = {3},
pages = {115-146},
publisher = {EDP Sciences},
title = {Approximation of the fractional Brownian sheet VIA Ornstein-Uhlenbeck sheet},
url = {http://eudml.org/doc/250120},
volume = {11},
year = {2007},
}
TY - JOUR
AU - Coutin, Laure
AU - Pontier, Monique
TI - Approximation of the fractional Brownian sheet VIA Ornstein-Uhlenbeck sheet
JO - ESAIM: Probability and Statistics
DA - 2007/3//
PB - EDP Sciences
VL - 11
SP - 115
EP - 146
AB -
A stochastic “Fubini” lemma and an approximation theorem for
integrals on the plane are used to produce a simulation algorithm
for an anisotropic fractional Brownian sheet. The convergence rate
is given. These results are valuable for any value of the Hurst
parameters $(\alpha_1,\alpha_2)\in ]0,1[^2,\alpha_i\neq\frac{1}{2}.$ Finally, the
approximation process
is iterative on the quarter plane $\mathbb {R}_+^2.$
A sample of such simulations can be used to test estimators
of the parameters αi,i = 1,2.
LA - eng
KW - random field simulation and approximation; anisotropic
fractional Brownian sheet.; anisotropic fractional Brownian sheet
UR - http://eudml.org/doc/250120
ER -
References
top- J. Audounet, G. Montseny and B. Mbodje, A simple viscoelastic damper model — application to a vibrating string. Analysis and optimization of systems: state and frequency domain approaches for infinite-dimensional systems (Sophia-Antipolis, 1992), Lect. Notes Control Inform. Sci.185, Springer, Berlin (1993) 436–446.
- A. Ayache, S. Léger and M. Pontier, Les ondelettes à la conquête du drap brownien fractionnaire. CRAS série I335 (2002) 1063–1068.
- A. Ayache and M. Taqqu, Rate optimality of wavelet series approximations of fractional Brownian motion. J. Fourier Anal. Appl.9 (2003) 451–471.
- J.M. Bardet, G. Lang, G. Oppenheim, A. Philippe and M. Taqqu, Generators of long-range dependent processes: a survey, in Long-Range dependence, Theory and Applications. Birkhauser (2003) 579–623.
- O.E. Barndorff-Nielsen and N. Shephard, Non Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics. J.R. Statistical SocietyB 63 (2001) 167–241.
- S. Bernam, Gaussian processes with stationary increments local times and sample function properties. Ann. Math. Statist.41 (1970) 1260–1272.
- P. Carmona, L. Coutin and G. Montseny, Approximation of some Gaussian processes. Stat. Inference of Stoch. Processes3 (2000) 161–171.
- S. Cohen, Champs localement auto-similaires, dans Lois d'échelle, fractales et ondelettes 1, P. Abry, P. Goncalvès, J. Lévy Véhel, Eds. (2001).
- X.M. Fernique, Régularité des trajectoires des fonctions aléatoires gaussiennes, in École d'été de probabilités de saint-Flour L. N. in Math480 (1974) 1–96.
- E. Igloi and G. Terdik, Long-range dependence through gamma-mixed Ornstein-Uhlenbeck process. E.J.P.4 (1999) 1–33.
- N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam (1981).
- I. Karatzas and S.E. Schreve, Brownian Motion and Stochastic Calculus. Springer, 2d edition (1999).
- S. Léger, Drap brownien fractionnaire, thèse à l'Université d'Orléans (2000).
- S. Léger and M. Pontier, Drap brownien fractionnaire, in C.R.A.S., Paris, série I329 (1999) 893–898.
- Y. Meyer, F. Sellan and M. Taqqu, Wavelets, generalized white noise and fractional integration: the synthesis of fractional Brownian motion. Journal of Fourier Analysis and Applications5 (1999) 465–494.
- D. Revuz and M. Yor, Continuous Martingales and Brownian Motion. Springer-Verlag, Berlin (1990).
- G. Samorodnitsky and M. Taqqu, Stable Non-Gaussian random Processes, Stochastic Modeling. Chapman and Hall, New York (1994).
- D.W. Stroock, A Concise Introduction to the Theory of Integration Stochastic Integration. Birkhauser, 2d edition (1994).
- A.T.A. Wood and G. Chan, A Simulation of stationary Gaussian processes in [0,1]d. J. Comput. Graphical Statist.3–4 (1994) 409–432.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.