On unicity of meromorphic functions due to a result of Yang - Hua
Archivum Mathematicum (2007)
- Volume: 043, Issue: 2, page 93-103
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topBai, Xiao-Tian, and Han, Qi. "On unicity of meromorphic functions due to a result of Yang - Hua." Archivum Mathematicum 043.2 (2007): 93-103. <http://eudml.org/doc/250164>.
@article{Bai2007,
abstract = {This paper studies the unicity of meromorphic(resp. entire) functions of the form $f^nf^\{\prime \}$ and obtains the following main result: Let $f$ and $g$ be two non-constant meromorphic (resp. entire) functions, and let $a\in \mathbb \{C\}\backslash \lbrace 0\rbrace $ be a non-zero finite value. Then, the condition that $E_\{3)\}(a,f^nf^\{\prime \})=E_\{3)\}(a,g^ng^\{\prime \})$ implies that either $f=dg$ for some $(n+1)$-th root of unity $d$, or $f=c_1e^\{cz\}$ and $g=c_2e^\{-cz\}$ for three non-zero constants $c$, $c_1$ and $c_2$ with $(c_1c_2)^\{n+1\}c^2=-a^2$ provided that $n\ge 11$ (resp. $n\ge 6$). It improves a result of C. C. Yang and X. H. Hua. Also, some other related problems are discussed.},
author = {Bai, Xiao-Tian, Han, Qi},
journal = {Archivum Mathematicum},
keywords = {entire functions; meromorphic functions; value sharing; unicity; entire functions; meromorphic functions; value sharing; unicity},
language = {eng},
number = {2},
pages = {93-103},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On unicity of meromorphic functions due to a result of Yang - Hua},
url = {http://eudml.org/doc/250164},
volume = {043},
year = {2007},
}
TY - JOUR
AU - Bai, Xiao-Tian
AU - Han, Qi
TI - On unicity of meromorphic functions due to a result of Yang - Hua
JO - Archivum Mathematicum
PY - 2007
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 043
IS - 2
SP - 93
EP - 103
AB - This paper studies the unicity of meromorphic(resp. entire) functions of the form $f^nf^{\prime }$ and obtains the following main result: Let $f$ and $g$ be two non-constant meromorphic (resp. entire) functions, and let $a\in \mathbb {C}\backslash \lbrace 0\rbrace $ be a non-zero finite value. Then, the condition that $E_{3)}(a,f^nf^{\prime })=E_{3)}(a,g^ng^{\prime })$ implies that either $f=dg$ for some $(n+1)$-th root of unity $d$, or $f=c_1e^{cz}$ and $g=c_2e^{-cz}$ for three non-zero constants $c$, $c_1$ and $c_2$ with $(c_1c_2)^{n+1}c^2=-a^2$ provided that $n\ge 11$ (resp. $n\ge 6$). It improves a result of C. C. Yang and X. H. Hua. Also, some other related problems are discussed.
LA - eng
KW - entire functions; meromorphic functions; value sharing; unicity; entire functions; meromorphic functions; value sharing; unicity
UR - http://eudml.org/doc/250164
ER -
References
top- Clunie J., On a result of Hayman, J. London Math. Soc. 42 (1967), 389–392. (1967) Zbl0169.40801MR0214769
- Fang M. L., Qiu H. L., Meromorphic functions that share fixed-points, J. Math. Anal. Appl. 268 (2000), 426–439. Zbl1030.30028MR1896207
- Hayman W. K., Meromorphic Functions, Clarendon Press, Oxford, 1964. (1964) Zbl0115.06203MR0164038
- Hayman W. K., Research Problems in Function Theory, Athlore Press (Univ. of London), 1967. (1967) Zbl0158.06301MR0217268
- Hayman W. K., Picard values of meromorphic functions and their derivatives, Ann. of Math. 70 (1959), 9–42. (1959) Zbl0088.28505MR0110807
- Yang C. C., On deficiencies of differential polynomials II, Math. Z. 125 (1972), 107–112. (1972) Zbl0217.38402MR0294642
- Yang C. C., Hua X. H., Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math. 22 (1997), 395–406. (1997) Zbl0890.30019MR1469799
- Yang C. C., Yi H. X., Uniqueness Theory of Meromorphic Functions, Science Press & Kluwer Academic Punlishers, Beijing & Dordrecht, 2003. Zbl1070.30011MR2105668
- Yi H. X., Uniqueness of meromorphic functions and a question of C. C. Yang, Complex Variables Theory Appl. 14 (1990), 169–176. (1990) Zbl0701.30025MR1048716
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.