On unicity of meromorphic functions due to a result of Yang - Hua

Xiao-Tian Bai; Qi Han

Archivum Mathematicum (2007)

  • Volume: 043, Issue: 2, page 93-103
  • ISSN: 0044-8753

Abstract

top
This paper studies the unicity of meromorphic(resp. entire) functions of the form f n f ' and obtains the following main result: Let f and g be two non-constant meromorphic (resp. entire) functions, and let a { 0 } be a non-zero finite value. Then, the condition that E 3 ) ( a , f n f ' ) = E 3 ) ( a , g n g ' ) implies that either f = d g for some ( n + 1 ) -th root of unity d , or f = c 1 e c z and g = c 2 e - c z for three non-zero constants c , c 1 and c 2 with ( c 1 c 2 ) n + 1 c 2 = - a 2 provided that n 11 (resp. n 6 ). It improves a result of C. C. Yang and X. H. Hua. Also, some other related problems are discussed.

How to cite

top

Bai, Xiao-Tian, and Han, Qi. "On unicity of meromorphic functions due to a result of Yang - Hua." Archivum Mathematicum 043.2 (2007): 93-103. <http://eudml.org/doc/250164>.

@article{Bai2007,
abstract = {This paper studies the unicity of meromorphic(resp. entire) functions of the form $f^nf^\{\prime \}$ and obtains the following main result: Let $f$ and $g$ be two non-constant meromorphic (resp. entire) functions, and let $a\in \mathbb \{C\}\backslash \lbrace 0\rbrace $ be a non-zero finite value. Then, the condition that $E_\{3)\}(a,f^nf^\{\prime \})=E_\{3)\}(a,g^ng^\{\prime \})$ implies that either $f=dg$ for some $(n+1)$-th root of unity $d$, or $f=c_1e^\{cz\}$ and $g=c_2e^\{-cz\}$ for three non-zero constants $c$, $c_1$ and $c_2$ with $(c_1c_2)^\{n+1\}c^2=-a^2$ provided that $n\ge 11$ (resp. $n\ge 6$). It improves a result of C. C. Yang and X. H. Hua. Also, some other related problems are discussed.},
author = {Bai, Xiao-Tian, Han, Qi},
journal = {Archivum Mathematicum},
keywords = {entire functions; meromorphic functions; value sharing; unicity; entire functions; meromorphic functions; value sharing; unicity},
language = {eng},
number = {2},
pages = {93-103},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On unicity of meromorphic functions due to a result of Yang - Hua},
url = {http://eudml.org/doc/250164},
volume = {043},
year = {2007},
}

TY - JOUR
AU - Bai, Xiao-Tian
AU - Han, Qi
TI - On unicity of meromorphic functions due to a result of Yang - Hua
JO - Archivum Mathematicum
PY - 2007
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 043
IS - 2
SP - 93
EP - 103
AB - This paper studies the unicity of meromorphic(resp. entire) functions of the form $f^nf^{\prime }$ and obtains the following main result: Let $f$ and $g$ be two non-constant meromorphic (resp. entire) functions, and let $a\in \mathbb {C}\backslash \lbrace 0\rbrace $ be a non-zero finite value. Then, the condition that $E_{3)}(a,f^nf^{\prime })=E_{3)}(a,g^ng^{\prime })$ implies that either $f=dg$ for some $(n+1)$-th root of unity $d$, or $f=c_1e^{cz}$ and $g=c_2e^{-cz}$ for three non-zero constants $c$, $c_1$ and $c_2$ with $(c_1c_2)^{n+1}c^2=-a^2$ provided that $n\ge 11$ (resp. $n\ge 6$). It improves a result of C. C. Yang and X. H. Hua. Also, some other related problems are discussed.
LA - eng
KW - entire functions; meromorphic functions; value sharing; unicity; entire functions; meromorphic functions; value sharing; unicity
UR - http://eudml.org/doc/250164
ER -

References

top
  1. Clunie J., On a result of Hayman, J. London Math. Soc. 42 (1967), 389–392. (1967) Zbl0169.40801MR0214769
  2. Fang M. L., Qiu H. L., Meromorphic functions that share fixed-points, J. Math. Anal. Appl. 268 (2000), 426–439. Zbl1030.30028MR1896207
  3. Hayman W. K., Meromorphic Functions, Clarendon Press, Oxford, 1964. (1964) Zbl0115.06203MR0164038
  4. Hayman W. K., Research Problems in Function Theory, Athlore Press (Univ. of London), 1967. (1967) Zbl0158.06301MR0217268
  5. Hayman W. K., Picard values of meromorphic functions and their derivatives, Ann. of Math. 70 (1959), 9–42. (1959) Zbl0088.28505MR0110807
  6. Yang C. C., On deficiencies of differential polynomials II, Math. Z. 125 (1972), 107–112. (1972) Zbl0217.38402MR0294642
  7. Yang C. C., Hua X. H., Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math. 22 (1997), 395–406. (1997) Zbl0890.30019MR1469799
  8. Yang C. C., Yi H. X., Uniqueness Theory of Meromorphic Functions, Science Press & Kluwer Academic Punlishers, Beijing & Dordrecht, 2003. Zbl1070.30011MR2105668
  9. Yi H. X., Uniqueness of meromorphic functions and a question of C. C. Yang, Complex Variables Theory Appl. 14 (1990), 169–176. (1990) Zbl0701.30025MR1048716

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.