Oscillatory and nonoscillatory solutions for first order impulsive dynamic inclusions on time scales

Mouffak Benchohra; Samira Hamani; Johnny Henderson

Archivum Mathematicum (2007)

  • Volume: 043, Issue: 4, page 237-250
  • ISSN: 0044-8753

Abstract

top
In this paper we discuss the existence of oscillatory and nonoscillatory solutions for first order impulsive dynamic inclusions on time scales. We shall rely of the nonlinear alternative of Leray-Schauder type combined with lower and upper solutions method.

How to cite

top

Benchohra, Mouffak, Hamani, Samira, and Henderson, Johnny. "Oscillatory and nonoscillatory solutions for first order impulsive dynamic inclusions on time scales." Archivum Mathematicum 043.4 (2007): 237-250. <http://eudml.org/doc/250174>.

@article{Benchohra2007,
abstract = {In this paper we discuss the existence of oscillatory and nonoscillatory solutions for first order impulsive dynamic inclusions on time scales. We shall rely of the nonlinear alternative of Leray-Schauder type combined with lower and upper solutions method.},
author = {Benchohra, Mouffak, Hamani, Samira, Henderson, Johnny},
journal = {Archivum Mathematicum},
keywords = {impulsive dynamic inclusion; oscillatory; convex valued multivalued; nonoscillatory; delta derivative; fixed point; time scale; upper and lower solutions; impulsive dynamic inclusion; oscillatory; convex valued multivalued; nonoscillatory},
language = {eng},
number = {4},
pages = {237-250},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Oscillatory and nonoscillatory solutions for first order impulsive dynamic inclusions on time scales},
url = {http://eudml.org/doc/250174},
volume = {043},
year = {2007},
}

TY - JOUR
AU - Benchohra, Mouffak
AU - Hamani, Samira
AU - Henderson, Johnny
TI - Oscillatory and nonoscillatory solutions for first order impulsive dynamic inclusions on time scales
JO - Archivum Mathematicum
PY - 2007
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 043
IS - 4
SP - 237
EP - 250
AB - In this paper we discuss the existence of oscillatory and nonoscillatory solutions for first order impulsive dynamic inclusions on time scales. We shall rely of the nonlinear alternative of Leray-Schauder type combined with lower and upper solutions method.
LA - eng
KW - impulsive dynamic inclusion; oscillatory; convex valued multivalued; nonoscillatory; delta derivative; fixed point; time scale; upper and lower solutions; impulsive dynamic inclusion; oscillatory; convex valued multivalued; nonoscillatory
UR - http://eudml.org/doc/250174
ER -

References

top
  1. Agarwal R. P., Benchohra M., O’Regan D., Ouahab A., Second order impulsive dynamic equations on time scales, Funct. Differ. Equ. 11 (2004), 223–234. MR2095486
  2. Agarwal R. P., Bohner M., Saker S. H., Oscillation of second order delay dynamic equations, Canad. Appl. Math. Quart. 13 (1), (2005), 1-17. Zbl1126.39003MR2236199
  3. Agarwal R. P., O’Regan D., Wong P. J. Y., Positive Solutions of Differential, Difference and Integral Equations, Kluwer Academic Publishers, Dordrecht, 1999. (1999) Zbl1157.34301MR1680024
  4. Agarwal R. P., Grace S. R., O’Regan D., Oscillation Theory for Second Order Dynamic Equations, Taylor Francis, Ltd., London, 2003. Zbl1043.34032MR1965832
  5. Aulbach B., Hilger S., Linear dynamic processes with inhomogeneous time scale. Nonlinear dynamics and quantum dynamical systems, Akademie-Verlag, Berlin, Math. Res. 59 (1990), 9–20. (1990) MR1068548
  6. Bainov D. D., Simeonov P. S., Systems with Impulse Effect, Ellis Horwood Ltd., Chichister, 1989. (1989) Zbl0684.34056MR1010418
  7. Bainov D. D., Simeonov P. S., Oscillation Theory of Impulsive Differential Equations, International Publications Orlando, Florida, 1998. (1998) Zbl0949.34002MR1459713
  8. Benchohra M., Boucherif A., An existence results for first order initial value problems for impulsive differential inclusions in Banach spaces, Arch. Math. (Brno) 36 (2000), 159–169. MR1785033
  9. Benchohra M., Hamani S., Henderson J., Oscillation and nonoscillation for impulsive dynamic equations on certain time scales, Adv. Differential Equations 2006 (2006), Article ID 60860, 12 pages. Zbl1139.39008MR2255161
  10. Benchohra M., Henderson J., Ntouyas S. K., Impulsive Diferential Equations and Inclusions, Hindawi Publishing Corporation, Vol. 2, New York, 2006. 
  11. Benchohra M., Henderson J., Ntouyas S. K., Ouahab A., On first order impulsive dynamic equations on time scales, J. Differ. Equations Appl. 10 (2004), 541–548. Zbl1054.39012MR2060411
  12. Benchohra M., Ntouyas S. K., Ouahab A., Existence results for second order boundary value problem of impulsive dynamic equations on time scales, J. Math. Anal. Appl. 296 (2004), 65–73. Zbl1060.34017MR2070493
  13. Bohner E. A., Bohner M., Saker S. H., Oscillation criteria for a certain class of second order Emden-Fowler dynamic equations, Electronic Trans. Numerical Anal. 27 (2007), 1–12. Zbl1177.34047MR2346144
  14. Bohner M., Peterson A., Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, New York, 2001. Zbl0978.39001MR1843232
  15. Bohner M., Peterson A., editors, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003. MR1962542
  16. Bohner M., Saker S. H., Oscillation of second order nonlinear dynamic equations on time scales, Rocky Mountain J. Math. 34 (2004), 1239–1254. Zbl1075.34028MR2095254
  17. Bohner M., Tisdell C., Second order dynamic inclusion, J. Nonlinear Math. Phys. 12 (2005), 36–45. MR2217094
  18. Deimling K., Multivalued Differential Equations, Walter De Gruyter, Berlin-New York, 1992. (1992) Zbl0820.34009MR1189795
  19. Erbe L., Oscillation criteria for second order linear equations on a time scale, Canad. Appl. Math. Quart. 9 (2001), 1–31. Zbl1050.39024MR1975729
  20. Erbe L., Peterson A., Saker S. H., Oscillation criteria for second order nonlinear dynamic equations on a time scale, J. London Math. Soc. 67 (2003), 701–714. MR1967701
  21. Graef J. R., Karsai J., On the oscillation of impulsively damped halflinear oscillators, Proc. Sixth Colloquium Qual. Theory Differential Equations, Electron. J. Qual. Theory Differential Equations (14), (2000), 1–12. Zbl0971.34022MR1798664
  22. Graef J. R., Karsai J., Oscillation and nonoscillation in nonlinear implusive system with increasing energy, in Proceeding of the Third International Conference on Dynamical systems and Differential Equations, Discrete Contin. Dynam. Systems 7 (2000), 161–173. MR1798664
  23. Granas A., Dugundji J., Fixed Point Theory, Springer-Verlag, New York, 2003. Zbl1025.47002MR1987179
  24. Henderson J., Nontrivial solutions to a nonlinear boundary value problem on a times scale, Comm. Appl. Nonlinear Anal. 11 (2004), 65–71. MR2028694
  25. Henderson J., Double solutions of impulsive dynamic boundary value problems on a time scale, J. Differ. Equations Appl. 8 (2002), 345–356. Zbl1003.39019MR1897856
  26. Henderson J., Tisdell C., Topological transversality and boundary value problems on time scales, J. Math. Anal. Appl. 289 (2004), 110–125. Zbl1047.34014MR2020531
  27. Hu, Sh., Papageorgiou N., Handbook of Multivalued Analysis, Volume I: Theory, Kluwer, Dordrecht, 1997. (1997) Zbl0887.47001MR1485775
  28. Lakshmikantham V., Bainov D. D., Simeonov P. S., Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989. (1989) Zbl0719.34002MR1082551
  29. Lakshmikantham V., Sivasundaram S., Kaymakcalan B., Dynamic Systems on Measure Chains, Kluwer Academic Publishers, Dordrecht, 1996. (1996) Zbl0869.34039MR1419803
  30. Saker S. H., Oscillation of nonlinear dynamic equations on time scales, Appl. Math. Comp. 148 (2004), 81–91. Zbl1045.39012MR2014626
  31. Samoilenko A. M., Perestyuk N. A., Impulsive Differential Equations, World Scientific, Singapore, 1995. (1995) Zbl0837.34003MR1355787

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.