Classification of rings satisfying some constraints on subsets
Archivum Mathematicum (2007)
- Volume: 043, Issue: 1, page 19-29
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topKhan, Moharram A.. "Classification of rings satisfying some constraints on subsets." Archivum Mathematicum 043.1 (2007): 19-29. <http://eudml.org/doc/250180>.
@article{Khan2007,
abstract = {Let $R$ be an associative ring with identity $1$ and $J(R)$ the Jacobson radical of $R$. Suppose that $m\ge 1$ is a fixed positive integer and $R$ an $m$-torsion-free ring with $1$. In the present paper, it is shown that $R$ is commutative if $R$ satisfies both the conditions (i) $[x^m,y^m]=0$ for all $x,y\in R\backslash J(R)$ and (ii) $[x,[x,y^m]]=0$, for all $x,y\in R\backslash J(R)$. This result is also valid if (ii) is replaced by (ii)’ $[(yx)^mx^m-x^m(xy)^m,x]=0$, for all $x,y\in R\backslash N(R)$. Our results generalize many well-known commutativity theorems (cf. [1], [2], [3], [4], [5], [6], [9], [10], [11] and [14]).},
author = {Khan, Moharram A.},
journal = {Archivum Mathematicum},
keywords = {Jacobson radical; nil commutator; periodic ring; Jacobson radical; nil commutators; periodic rings; commutativity theorems; commutator constraints},
language = {eng},
number = {1},
pages = {19-29},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Classification of rings satisfying some constraints on subsets},
url = {http://eudml.org/doc/250180},
volume = {043},
year = {2007},
}
TY - JOUR
AU - Khan, Moharram A.
TI - Classification of rings satisfying some constraints on subsets
JO - Archivum Mathematicum
PY - 2007
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 043
IS - 1
SP - 19
EP - 29
AB - Let $R$ be an associative ring with identity $1$ and $J(R)$ the Jacobson radical of $R$. Suppose that $m\ge 1$ is a fixed positive integer and $R$ an $m$-torsion-free ring with $1$. In the present paper, it is shown that $R$ is commutative if $R$ satisfies both the conditions (i) $[x^m,y^m]=0$ for all $x,y\in R\backslash J(R)$ and (ii) $[x,[x,y^m]]=0$, for all $x,y\in R\backslash J(R)$. This result is also valid if (ii) is replaced by (ii)’ $[(yx)^mx^m-x^m(xy)^m,x]=0$, for all $x,y\in R\backslash N(R)$. Our results generalize many well-known commutativity theorems (cf. [1], [2], [3], [4], [5], [6], [9], [10], [11] and [14]).
LA - eng
KW - Jacobson radical; nil commutator; periodic ring; Jacobson radical; nil commutators; periodic rings; commutativity theorems; commutator constraints
UR - http://eudml.org/doc/250180
ER -
References
top- Abu-Khuzam H., Tominaga H., Yaqub A., Commutativity theorems for -unital rings satisfying polynomial identities, Math. J. Okayama Univ. 22 (1980), 111–114. (1980) Zbl0451.16023MR0595791
- Abu-Khuzam H., A commutativity theorem for periodic rings, Math. Japon. 32 (1987), 1–3. (1987) Zbl0609.16020MR0886192
- Abu-Khuzam H., Bell H. E., Yaqub A., Commutativity of rings satisfying certain polynomial identities, Bull. Austral. Math. Soc. 44 (1991), 63–69. (1991) Zbl0721.16020MR1120394
- Abu-Khuzam H., Yaqub A., Commutativity of rings satisfying some polynomial constraints, Acta Math. Hungar. 67 (1995), 207–217. (1995) MR1315805
- Bell H. E., Some commutativity results for periodic rings, Acta Math. Acad. Sci. Hungar. 28 (1976), 279–283. (1976) Zbl0335.16035MR0419535
- Bell H. E., On rings with commutativity powers, Math. Japon. 24 (1979), 473–478. (1979) MR0557482
- Herstein I. N., A note on rings with central nilpotent elements, Proc. Amer. Math. Soc. 5 (1954), 620. (1954) Zbl0055.26003MR0062714
- Herstein I. N., A commutativity theorem, J. Algebra 38 (1976), 112–118. (1976) Zbl0323.16014MR0396687
- Herstein I. N., Power maps in rings, Michigan Math. J. 8 (1961), 29–32. (1961) Zbl0096.25701MR0118741
- Hirano Y., Hongon M., Tominaga H., Commutativity theorems for certain rings, Math. J. Okayama Univ. 22 (1980), 65–72. (1980) MR0573674
- Hongan M., Tominaga H., Some commutativity theorems for semiprime rings, Hokkaido Math. J. 10 (1981), 271–277. (1981) MR0662304
- Jacobson N., Structure of Rings, Amer. Math. Soc. Colloq. Publ. Providence 1964. (1964)
- Kezlan T. P., A note on commutativity of semiprime -rings, Math. Japon. 27 (1982), 267–268. (1982) Zbl0481.16013MR0655230
- Khan M. A., Commutativity of rings with constraints involving a subset, Czechoslovak Math. J. 53 (2003), 545–559. Zbl1080.16508MR2000052
- Nicholson W. K., Yaqub A., A commutativity theorem for rings and groups, Canad. Math. Bull. 22 (1979), 419–423. (1979) Zbl0605.16020MR0563755
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.