Ideal amenability of module extensions of Banach algebras
Eshaghi M. Gordji; F. Habibian; B. Hayati
Archivum Mathematicum (2007)
- Volume: 043, Issue: 3, page 177-184
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topGordji, Eshaghi M., Habibian, F., and Hayati, B.. "Ideal amenability of module extensions of Banach algebras." Archivum Mathematicum 043.3 (2007): 177-184. <http://eudml.org/doc/250181>.
@article{Gordji2007,
abstract = {Let $\mathcal \{A\}$ be a Banach algebra. $\mathcal \{A\}$ is called ideally amenable if for every closed ideal $I$ of $\mathcal \{A\}$, the first cohomology group of $\mathcal \{A\}$ with coefficients in $I^*$ is zero, i.e. $H^1(\{\mathcal \{A\}\}, I^*)=\lbrace 0\rbrace $. Some examples show that ideal amenability is different from weak amenability and amenability. Also for $n\in \{N\}$, $\mathcal \{A\}$ is called $n$-ideally amenable if for every closed ideal $I$ of $\mathcal \{A\}$, $H^1(\{\mathcal \{A\}\},I^\{(n)\})=\lbrace 0\rbrace $. In this paper we find the necessary and sufficient conditions for a module extension Banach algebra to be 2-ideally amenable.},
author = {Gordji, Eshaghi M., Habibian, F., Hayati, B.},
journal = {Archivum Mathematicum},
keywords = {ideally amenable; Banach algebra; derivation; ideally amenable; Banach algebra; derivation},
language = {eng},
number = {3},
pages = {177-184},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Ideal amenability of module extensions of Banach algebras},
url = {http://eudml.org/doc/250181},
volume = {043},
year = {2007},
}
TY - JOUR
AU - Gordji, Eshaghi M.
AU - Habibian, F.
AU - Hayati, B.
TI - Ideal amenability of module extensions of Banach algebras
JO - Archivum Mathematicum
PY - 2007
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 043
IS - 3
SP - 177
EP - 184
AB - Let $\mathcal {A}$ be a Banach algebra. $\mathcal {A}$ is called ideally amenable if for every closed ideal $I$ of $\mathcal {A}$, the first cohomology group of $\mathcal {A}$ with coefficients in $I^*$ is zero, i.e. $H^1({\mathcal {A}}, I^*)=\lbrace 0\rbrace $. Some examples show that ideal amenability is different from weak amenability and amenability. Also for $n\in {N}$, $\mathcal {A}$ is called $n$-ideally amenable if for every closed ideal $I$ of $\mathcal {A}$, $H^1({\mathcal {A}},I^{(n)})=\lbrace 0\rbrace $. In this paper we find the necessary and sufficient conditions for a module extension Banach algebra to be 2-ideally amenable.
LA - eng
KW - ideally amenable; Banach algebra; derivation; ideally amenable; Banach algebra; derivation
UR - http://eudml.org/doc/250181
ER -
References
top- Bade W. G., Curtis P. G., Dales H. G.,, Amenability and weak amenability for Beurling and Lipschits algebra, Proc. London Math. Soc. (3) 55 (1987), 359–377. (1987) MR0896225
- Dales H. G., Ghahramani F., Grønbæk N., Derivations into iterated duals of Banach algebras, Studia Math. 128 (1998), 19–54. (1998) MR1489459
- Despic M., Ghahramani F., Weak amenability of group algebras of locally compact groups, Canad. Math. Bull. 37 (1994), 165–167. (1994) Zbl0813.43001MR1275699
- Eshaghi Gordji M., Hosseiniun S. A. R., Ideal amenability of Banach algebras on locally compact groups, Proc. Indian Acad. Sci. 115, 3 (2005), 319–325. Zbl1098.46033MR2161735
- Eshaghi Gordji M., Hayati B., Hosseiniun S. A. R., Derivations into duals of closed ideals of Banach algebras, submitted.
- Eshaghi Gordji M., Habibian F., Rejali A., Ideal amenability of module extension Banach algebras, Int. J. Contemp. Math. Sci. 2, 5 (2007), 213–219. Zbl1120.46308MR2296773
- Eshaghi Gordji M., Memarbashi R., Derivations into n-th duals of ideals of Banach algebras, submitted. Zbl1154.46026
- Eshaghi Gordji M., Yazdanpanah T., Derivations into duals of ideals of Banach algebras, Proc. Indian Acad. Sci. 114, 4 (2004), 399–408. MR2067702
- Grønbæk N., A characterization of weakly amenable Banach algebras, Studia Math. 94 (1989), 150–162. (1989) MR1025743
- Grønbæk N., Weak and cyclic amenability for non-commutative Banach algebras, Proc. Edinburg Math. Soc. 35 (1992), 315–328. (1992) MR1169250
- Haagerup U., All nuclear -algebras are amenable, Invent. Math. 74 (1983), 305–319. (1983) MR0723220
- Johnson B. E., Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972). (1972) Zbl0256.18014MR0374934
- Johnson B. E., Weak amenability of group algebras, Bull. London Math. Soc. 23 (1991), 281–284. (1991) Zbl0757.43002MR1123339
- Johnson B. E., White M. C., A non-weakly amenable augmentation ideal, submitted.
- Wassermann S., On tensor products of certain group algebras, J. Funct. Anal. 23 (1976), 28–36. (1976) Zbl0358.46040MR0425628
- Zhang, Yong, Weak amenability of module extensions of Banach algebras, Trans. Amer. Math. Soc. 354, (10) (2002), 4131–4151. Zbl1008.46019MR1926868
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.