Hyperkaehler metrics from projective superspace

Ulf Lindström

Archivum Mathematicum (2007)

  • Volume: 043, Issue: 5, page 491-498
  • ISSN: 0044-8753

Abstract

top
This is a brief review of how sigma models in Projective Superspace have become important tools for constructing new hyperkähler metrics.

How to cite

top

Lindström, Ulf. "Hyperkaehler metrics from projective superspace." Archivum Mathematicum 043.5 (2007): 491-498. <http://eudml.org/doc/250183>.

@article{Lindström2007,
abstract = {This is a brief review of how sigma models in Projective Superspace have become important tools for constructing new hyperkähler metrics.},
author = {Lindström, Ulf},
journal = {Archivum Mathematicum},
keywords = {superspace; sigma models; hyperkähler geometry; superspace; sigma models; hyper-Kähler geometry},
language = {eng},
number = {5},
pages = {491-498},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Hyperkaehler metrics from projective superspace},
url = {http://eudml.org/doc/250183},
volume = {043},
year = {2007},
}

TY - JOUR
AU - Lindström, Ulf
TI - Hyperkaehler metrics from projective superspace
JO - Archivum Mathematicum
PY - 2007
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 043
IS - 5
SP - 491
EP - 498
AB - This is a brief review of how sigma models in Projective Superspace have become important tools for constructing new hyperkähler metrics.
LA - eng
KW - superspace; sigma models; hyperkähler geometry; superspace; sigma models; hyper-Kähler geometry
UR - http://eudml.org/doc/250183
ER -

References

top
  1. Alvarez-Gaumé L., Freedman D. Z., Geometrical structure and ultraviolet finiteness in the supersymmetric sigma model, Comm. Math. Phys. 80, 443 (1981). (1981) MR0626710
  2. Arai M., Kuzenko S. M., Lindstrom U., Hyperkaehler sigma models on cotangent bundles of Hermitian symmetric spaces using projective superspace, JHEP 0702, 100 (2007), [arXiv:hep-th/0612174]. MR2318051
  3. Buscher T., Lindstrom U., Roček M., New supersymmetric sigma models with Wess-Zumino terms, Phys. Lett. B 202, 94 (1988). (1988) MR0930852
  4. Galperin A. S., Ivanov E. A., Ogievetsky V. I., Sokatchev E. S., Harmonic Superspace, Cambridge University Press (UK) (2001), 306 p. Zbl1152.81001MR1865518
  5. Gates S. J., Hull C. M., Roček M., Twisted multiplets and new supersymmetric nonlinear sigma models, Nuclear Phys. B 248, 157 (1984). (1984) MR0776369
  6. Gates S. J., Jr., Kuzenko S. M., The CNM-hypermultiplet nexus, Nuclear Phys. B 543, 122 (1999), [hep-th/9810137]. (1999) Zbl0958.81179MR1686128
  7. Gonzalez-Rey F., Roček M., Wiles S., Lindstrom U., von Unge R., Feynman rules in N = 2 projective superspace. I: Massless hypermultiplets, Nuclear Phys. B 516, 426 (1998), [arXiv:hep-th/9710250]. (1998) MR1630237
  8. Gonzalez-Rey F., von Unge R., Feynman rules in N = 2 projective superspace. II: Massive hypermultiplets, Nuclear Phys. B 516, 449 (1998), [arXiv:hep-th/9711135]. (1998) Zbl0977.81141MR1630233
  9. Gonzalez-Rey F., Feynman rules in N = 2 projective superspace. III: Yang-Mills multiplet, arXiv:hep-th/9712128. 
  10. Grundberg J., Lindstrom U., Actions for linear multiplets in six-dimensions, Class. Quant. Grav. 2, L33 (1985). (1985) MR0786559
  11. Gualtieri M., Generalized complex geometry, Oxford University DPhil thesis, [arXiv:math.DG/0401221]. Zbl1235.32020MR2811595
  12. Hitchin N. J., Karlhede A., Lindstrom U., Rocek M., Hyperkahler metrics and supersymmetry, Comm. Math. Phys. 108, 535 (1987). (1987) MR0877637
  13. Hitchin N., Generalized Calabi-Yau manifolds, Q. J. Math. 54 (2003), No. 3, 281–308, [arXiv:math.DG/0209099]. Zbl1076.32019MR2013140
  14. Ivanov I. T., Roček M., Supersymmetric sigma models, twistors, and the Atiyah-Hitchin metric, Comm. Math. Phys. 182, 291 (1996), [arXiv:hep-th/9512075]. (1996) Zbl0882.32014MR1447294
  15. Karlhede A., Lindstrom U., Roček M., Selfinteracting tensor multiplets in N = 2 superspace, Phys. Lett. B 147, 297 (1984). (1984) MR0769049
  16. Karlhede A., Lindstrom U., Roček M., Hyperkahler manifolds and nonlinear supermultiplets, Comm. Math. Phys. 108, 529 (1987). (1987) MR0877636
  17. Kuzenko S. M., Projective superspace as a double-punctured harmonic superspace, Internat. J. Modern Phys. A 14, 1737 (1999), [arXiv:hep-th/9806147]. (1999) Zbl0938.81039MR1686416
  18. van Nieuwenhuizen P., General theory of coset manifolds and antisymmetric tensors applied to Kaluza-Klein supergravity, Published in Trieste School 1984:0239. (1984) 
  19. Kuzenko S. M., Extended supersymmetric nonlinear sigma-models on cotangent bundles of Kähler manifolds: Off-shell realizations, gauging, superpotentials, Talks given at the University of Munich, Imperial College, and Cambridge University (May–June, 2006). 
  20. Lindström U., Ivanov I. T., Roček M., New N = 4 superfields and sigma models, Phys. Lett. B 328, 49 (1994). [arXiv:hep-th/9401091]. (1994) MR1288922
  21. Lindström U., Kim B. B., Roček M., The nonlinear multiplet revisited, Phys. Lett. B 342, 99 (1995) [arXiv:hep-th/9406062]. (1995) MR1314388
  22. Lindström U., Roček M., Scalar tensor duality and N = 1 , N = 2 nonlinear sigma models, Nuclear Phys. B 222, 285 (1983). (1983) MR0710273
  23. Lindström U., Roček M., New hyperkahler metrics and new supermultiplets, Comm. Math. Phys. 115, 21 (1988). (1988) MR0929144
  24. Lindström U., Roček M., N = 2 Superyang-Mills theory in projective superspace, Comm. Math. Phys. 128, 191 (1990). (191) MR1042450
  25. Lindström U., Roček M., von Unge R., Zabzine M., Generalized Kaehler manifolds and off-shell supersymmetry, arXiv:hep-th/0512164. Zbl1114.81077
  26. Lindström U., Roček M., von Unge R., Zabzine M., Linearizing generalized Kaehler geometry, arXiv:hep-th/0702126. 
  27. Zumino B., Supersymmetry and Kahler manifolds, Phys. Lett. B 87, 203 (1979). (1979) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.