Linear hyperbolic problems in the whole scale of Sobolev-type spaces of periodic functions

Irina Kmit

Commentationes Mathematicae Universitatis Carolinae (2007)

  • Volume: 48, Issue: 4, page 631-645
  • ISSN: 0010-2628

Abstract

top
We study one-dimensional linear hyperbolic systems with L -coefficients subjected to periodic conditions in time and reflection boundary conditions in space. We derive a priori estimates and give an operator representation of solutions in the whole scale of Sobolev-type spaces of periodic functions. These spaces give an optimal regularity trade-off for our problem.

How to cite

top

Kmit, Irina. "Linear hyperbolic problems in the whole scale of Sobolev-type spaces of periodic functions." Commentationes Mathematicae Universitatis Carolinae 48.4 (2007): 631-645. <http://eudml.org/doc/250187>.

@article{Kmit2007,
abstract = {We study one-dimensional linear hyperbolic systems with $L^\{\infty \}$-coefficients subjected to periodic conditions in time and reflection boundary conditions in space. We derive a priori estimates and give an operator representation of solutions in the whole scale of Sobolev-type spaces of periodic functions. These spaces give an optimal regularity trade-off for our problem.},
author = {Kmit, Irina},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {hyperbolic systems; periodic-Dirichlet problems; anisotropic Sobolev spaces; a priori estimates; 1D linear hyperbolic systems; periodic solutions},
language = {eng},
number = {4},
pages = {631-645},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Linear hyperbolic problems in the whole scale of Sobolev-type spaces of periodic functions},
url = {http://eudml.org/doc/250187},
volume = {48},
year = {2007},
}

TY - JOUR
AU - Kmit, Irina
TI - Linear hyperbolic problems in the whole scale of Sobolev-type spaces of periodic functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2007
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 48
IS - 4
SP - 631
EP - 645
AB - We study one-dimensional linear hyperbolic systems with $L^{\infty }$-coefficients subjected to periodic conditions in time and reflection boundary conditions in space. We derive a priori estimates and give an operator representation of solutions in the whole scale of Sobolev-type spaces of periodic functions. These spaces give an optimal regularity trade-off for our problem.
LA - eng
KW - hyperbolic systems; periodic-Dirichlet problems; anisotropic Sobolev spaces; a priori estimates; 1D linear hyperbolic systems; periodic solutions
UR - http://eudml.org/doc/250187
ER -

References

top
  1. Bandelow U., Recke L., Sandstede B., Frequency regions for forced locking of self-pulsating multi-section DFB lasers, Optics Comm. 147 (1998), 212-218. (1998) 
  2. Bourbaki N., Integration, Chapters 1/4, Actualités Scientifiques et Industrielles, Hermann, Paris, 1966. Zbl1116.28002
  3. Jochmann F., Recke L., Well-posedness of an initial boundary value problem from laser dynamics, Math. Models Methods Appl. Sci. 12 (2002), 593-606. (2002) Zbl1025.35011MR1899843
  4. Garrett P., Functions on circles, 2006; Eprint: www.math.umn.edu/garrett/m/mfms/notes/09_sobolev.ps. 
  5. Gorbachuk V.I., Gorbachuk M.L., Boundary value problems for operator differential equations, Naukova Dumka, Kiev, 1984; English translation: Kluwer Academic Publishers, Dordrecht, 1991. Zbl0845.34065MR0776604
  6. Herrmann L., Periodic solutions of abstract differential equations: the Fourier method, Czechoslovak Math. J. 30 (105) (1980), 177-206. (1980) Zbl0445.35013MR0566046
  7. Kmit I., Recke L., Fredholm alternative for periodic-Dirichlet problems for linear hyperbolic systems, J. Math. Anal. Appl. 335 (2007), 355-370. (2007) Zbl1160.35046MR2340326
  8. Recke L., Schneider K.R., Strygin V.V., Spectral properties of coupled wave equations, Z. Angew. Math. Phys. 50 (1999), 6 925-933. (1999) MR1735638
  9. Rehberg J., Wünsche H.-J., Bandelow U., Wenzel H., Spectral properties of a system describing fast pulsating DFB lasers, Z. Angew. Math. Mech. 77 (1997), 75-77. (1997) MR1433576
  10. Robinson J.C., Infinite-Dimensional Dynamical Systems, Cambridge Texts in Appl. Math., Cambridge University Press, Cambridge, 2001. Zbl1084.37063MR1881888
  11. Sieber J., Numerical bifurcation analysis for multi-section semiconductor lasers, SIAM J. Appl. Dyn. Syst. 1 (2002), 248-270. (2002) MR1968370
  12. Sieber J., Recke L., Schneider K., Dynamics of multisection semiconductor lasers, J. Math. Sci. (New York) 124 (2004), 5 5298-5309. (2004) MR2129136
  13. Tromborg B., Lassen H.E., Olesen H., Traveling wave analysis of semiconductor lasers, IEEE J. of Quant. El. 30 (1994), 5 939-956. (1994) 
  14. Vejvoda O. et al., Partial Differential Equations: Time-Periodic Solutions, Sijthoff Noordhoff, 1981. Zbl0501.35001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.