Linear hyperbolic problems in the whole scale of Sobolev-type spaces of periodic functions
Commentationes Mathematicae Universitatis Carolinae (2007)
- Volume: 48, Issue: 4, page 631-645
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKmit, Irina. "Linear hyperbolic problems in the whole scale of Sobolev-type spaces of periodic functions." Commentationes Mathematicae Universitatis Carolinae 48.4 (2007): 631-645. <http://eudml.org/doc/250187>.
@article{Kmit2007,
abstract = {We study one-dimensional linear hyperbolic systems with $L^\{\infty \}$-coefficients subjected to periodic conditions in time and reflection boundary conditions in space. We derive a priori estimates and give an operator representation of solutions in the whole scale of Sobolev-type spaces of periodic functions. These spaces give an optimal regularity trade-off for our problem.},
author = {Kmit, Irina},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {hyperbolic systems; periodic-Dirichlet problems; anisotropic Sobolev spaces; a priori estimates; 1D linear hyperbolic systems; periodic solutions},
language = {eng},
number = {4},
pages = {631-645},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Linear hyperbolic problems in the whole scale of Sobolev-type spaces of periodic functions},
url = {http://eudml.org/doc/250187},
volume = {48},
year = {2007},
}
TY - JOUR
AU - Kmit, Irina
TI - Linear hyperbolic problems in the whole scale of Sobolev-type spaces of periodic functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2007
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 48
IS - 4
SP - 631
EP - 645
AB - We study one-dimensional linear hyperbolic systems with $L^{\infty }$-coefficients subjected to periodic conditions in time and reflection boundary conditions in space. We derive a priori estimates and give an operator representation of solutions in the whole scale of Sobolev-type spaces of periodic functions. These spaces give an optimal regularity trade-off for our problem.
LA - eng
KW - hyperbolic systems; periodic-Dirichlet problems; anisotropic Sobolev spaces; a priori estimates; 1D linear hyperbolic systems; periodic solutions
UR - http://eudml.org/doc/250187
ER -
References
top- Bandelow U., Recke L., Sandstede B., Frequency regions for forced locking of self-pulsating multi-section DFB lasers, Optics Comm. 147 (1998), 212-218. (1998)
- Bourbaki N., Integration, Chapters 1/4, Actualités Scientifiques et Industrielles, Hermann, Paris, 1966. Zbl1116.28002
- Jochmann F., Recke L., Well-posedness of an initial boundary value problem from laser dynamics, Math. Models Methods Appl. Sci. 12 (2002), 593-606. (2002) Zbl1025.35011MR1899843
- Garrett P., Functions on circles, 2006; Eprint: www.math.umn.edu/garrett/m/mfms/notes/09_sobolev.ps.
- Gorbachuk V.I., Gorbachuk M.L., Boundary value problems for operator differential equations, Naukova Dumka, Kiev, 1984; English translation: Kluwer Academic Publishers, Dordrecht, 1991. Zbl0845.34065MR0776604
- Herrmann L., Periodic solutions of abstract differential equations: the Fourier method, Czechoslovak Math. J. 30 (105) (1980), 177-206. (1980) Zbl0445.35013MR0566046
- Kmit I., Recke L., Fredholm alternative for periodic-Dirichlet problems for linear hyperbolic systems, J. Math. Anal. Appl. 335 (2007), 355-370. (2007) Zbl1160.35046MR2340326
- Recke L., Schneider K.R., Strygin V.V., Spectral properties of coupled wave equations, Z. Angew. Math. Phys. 50 (1999), 6 925-933. (1999) MR1735638
- Rehberg J., Wünsche H.-J., Bandelow U., Wenzel H., Spectral properties of a system describing fast pulsating DFB lasers, Z. Angew. Math. Mech. 77 (1997), 75-77. (1997) MR1433576
- Robinson J.C., Infinite-Dimensional Dynamical Systems, Cambridge Texts in Appl. Math., Cambridge University Press, Cambridge, 2001. Zbl1084.37063MR1881888
- Sieber J., Numerical bifurcation analysis for multi-section semiconductor lasers, SIAM J. Appl. Dyn. Syst. 1 (2002), 248-270. (2002) MR1968370
- Sieber J., Recke L., Schneider K., Dynamics of multisection semiconductor lasers, J. Math. Sci. (New York) 124 (2004), 5 5298-5309. (2004) MR2129136
- Tromborg B., Lassen H.E., Olesen H., Traveling wave analysis of semiconductor lasers, IEEE J. of Quant. El. 30 (1994), 5 939-956. (1994)
- Vejvoda O. et al., Partial Differential Equations: Time-Periodic Solutions, Sijthoff Noordhoff, 1981. Zbl0501.35001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.