Central limit theorem for Hölder processes on -unit cube
Commentationes Mathematicae Universitatis Carolinae (2007)
- Volume: 48, Issue: 1, page 83-91
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKlicnarová, Jana. "Central limit theorem for Hölder processes on $\mathbb {R}^m$-unit cube." Commentationes Mathematicae Universitatis Carolinae 48.1 (2007): 83-91. <http://eudml.org/doc/250188>.
@article{Klicnarová2007,
abstract = {We consider a sequence of stochastic processes $(X_n(\mathbf \{t\}), \mathbf \{t\}\in [0,1]^m)$ with continuous trajectories and we show conditions for the tightness of the sequence in the Hölder space with a parameter $\gamma $.},
author = {Klicnarová, Jana},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Hölder space; tightness; weak convergence; Hölder space; tightness; weak convergence},
language = {eng},
number = {1},
pages = {83-91},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Central limit theorem for Hölder processes on $\mathbb \{R\}^m$-unit cube},
url = {http://eudml.org/doc/250188},
volume = {48},
year = {2007},
}
TY - JOUR
AU - Klicnarová, Jana
TI - Central limit theorem for Hölder processes on $\mathbb {R}^m$-unit cube
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2007
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 48
IS - 1
SP - 83
EP - 91
AB - We consider a sequence of stochastic processes $(X_n(\mathbf {t}), \mathbf {t}\in [0,1]^m)$ with continuous trajectories and we show conditions for the tightness of the sequence in the Hölder space with a parameter $\gamma $.
LA - eng
KW - Hölder space; tightness; weak convergence; Hölder space; tightness; weak convergence
UR - http://eudml.org/doc/250188
ER -
References
top- Billingsley P., Convergence of Probability Measures, Wiley, New York. Zbl0944.60003MR1700749
- Ledoux M., Talagrand M., Probability in Banach Spaces, Springer, New York. Zbl0748.60004
- Lamperti J., On convergence of stochastic processes, Trans. Amer. Math. Soc. 104 430-435. Zbl0113.33502MR0143245
- Hamadouche D., Invariance principles in Hölder spaces, Portugal. Math. 57 127-153. Zbl0965.60011MR1759810
- Kerkyacharian G., Roynette B., Une démonstration simple des théorèmes de Kolmogorov, Donsker et Ito-Nisio, C.R. Acad. Sci. Paris Sér. Math. I 312 877-882. Zbl0764.60008MR1108512
- Račkauskas A., Suquet C., Random fields and central limit theorem in some generalized Hölder spaces, Proceedings of the 7th international Vilnius conference, pp.599-616.
- Račkauskas A., Suquet C., Invariance principles for adaptive self-normalized partial sums processes, Stochastic Process. Appl. 95 63-81. MR1847092
- Račkauskas A., Suquet C., Central limit theorems in Hölder topologies for Banach space valued random fields, Theory Probab. Appl. 49 1 77-92. MR2141332
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.