On the regularity of local minimizers of decomposable variational integrals on domains in
Michael Bildhauer; Martin Fuchs
Commentationes Mathematicae Universitatis Carolinae (2007)
- Volume: 48, Issue: 2, page 321-341
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBildhauer, Michael, and Fuchs, Martin. "On the regularity of local minimizers of decomposable variational integrals on domains in $\mathbb {R}^2$." Commentationes Mathematicae Universitatis Carolinae 48.2 (2007): 321-341. <http://eudml.org/doc/250199>.
@article{Bildhauer2007,
abstract = {We consider local minimizers $u : \mathbb \{R\}^2\supset \Omega \rightarrow \mathbb \{R\}^N$ of variational integrals like $\int _\Omega [(1+|\partial _1 u|^\{2\})^\{p/2\}+(1+|\partial _2 u|^\{2\})^\{q/2\}]\,dx$ or its degenerate variant $\int _\Omega [|\partial _1 u|^p+|\partial _2 u|^q]\,dx$ with exponents $2\le p < q < \infty $ which do not fall completely in the category studied in Bildhauer M., Fuchs M., Calc. Var. 16 (2003), 177–186. We prove interior $C^\{1,\alpha \}$- respectively $C^\{1\}$-regularity of $u$ under the condition that $q < 2p$. For decomposable variational integrals of arbitrary order a similar result is established by the way extending the work Bildhauer M., Fuchs M., Ann. Acad. Sci. Fenn. Math. 31 (2006), 349–362.},
author = {Bildhauer, Michael, Fuchs, Martin},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {non-standard growth; vector case; local minimizers; interior regularity; problems of higher order; non-standard growth; vector case; local minimizers; interior regularity; problems of higher order},
language = {eng},
number = {2},
pages = {321-341},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the regularity of local minimizers of decomposable variational integrals on domains in $\mathbb \{R\}^2$},
url = {http://eudml.org/doc/250199},
volume = {48},
year = {2007},
}
TY - JOUR
AU - Bildhauer, Michael
AU - Fuchs, Martin
TI - On the regularity of local minimizers of decomposable variational integrals on domains in $\mathbb {R}^2$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2007
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 48
IS - 2
SP - 321
EP - 341
AB - We consider local minimizers $u : \mathbb {R}^2\supset \Omega \rightarrow \mathbb {R}^N$ of variational integrals like $\int _\Omega [(1+|\partial _1 u|^{2})^{p/2}+(1+|\partial _2 u|^{2})^{q/2}]\,dx$ or its degenerate variant $\int _\Omega [|\partial _1 u|^p+|\partial _2 u|^q]\,dx$ with exponents $2\le p < q < \infty $ which do not fall completely in the category studied in Bildhauer M., Fuchs M., Calc. Var. 16 (2003), 177–186. We prove interior $C^{1,\alpha }$- respectively $C^{1}$-regularity of $u$ under the condition that $q < 2p$. For decomposable variational integrals of arbitrary order a similar result is established by the way extending the work Bildhauer M., Fuchs M., Ann. Acad. Sci. Fenn. Math. 31 (2006), 349–362.
LA - eng
KW - non-standard growth; vector case; local minimizers; interior regularity; problems of higher order; non-standard growth; vector case; local minimizers; interior regularity; problems of higher order
UR - http://eudml.org/doc/250199
ER -
References
top- Adams R.A., Sobolev Spaces, Academic Press, New York-San Francisco-London, 1975. Zbl1098.46001MR0450957
- Acerbi E., Fusco N., Partial regularity under anisotropic growth conditions, J. Differential Equations 107 1 (1994), 46-67. (1994) Zbl0807.49010MR1260848
- Bildhauer M., Convex variational problems: linear, nearly linear and anisotropic growth conditions, Lecture Notes in Mathematics 1818, Springer, Berlin-Heidelberg-New York, 2003. Zbl1033.49001MR1998189
- Bildhauer M., Fuchs M., Partial regularity for variational integrals with -growth, Calc. Var. Partial Differential Equations 13 (2001), 537-560. (2001) Zbl1018.49026MR1867941
- Bildhauer M., Fuchs M., Two-dimensional anisotropic variational problems, Calc. Var. Partial Differential Equations 16 (2003), 177-186. (2003) MR1956853
- Bildhauer M., Fuchs M., Higher-order variational problems on two-dimensional domains, Ann. Acad. Sci. Fenn. Math. 31 (2006), 349-362. (2006) Zbl1136.49027MR2248820
- Bildhauer M., Fuchs M., Smoothness of weak solutions of the Ramberg/Osgood equations on plane domains, Z. Angew. Math. Mech. 87.1 (2007), 70-76. (2007) Zbl1104.74030MR2287173
- Bildhauer M., Fuchs M., -solutions to non-autonomous anisotropic variational problems, Calc. Var. Partial Differential Equations 24 (2005), 309-340. (2005) MR2174429
- Bildhauer M., Fuchs M., A regularity result for stationary electrorheological fluids in two dimensions, Math. Methods Appl. Sci. 27 (2004), 1607-1617. (2004) Zbl1058.76073MR2077446
- Bildhauer M., Fuchs M., Zhong X., A lemma on the higher integrability of functions with applications to the regularity theory of two-dimensional generalized Newtonian fluids, Manuscripta Math. 116 (2005), 135-156. (2005) Zbl1116.49018MR2122416
- Bildhauer M., Fuchs M., Zhong X., Variational integrals with a wide range of aniso- tropy, to appear in Algebra i Analiz.
- Bildhauer M., Fuchs M., Zhong X., On strong solutions of the differential equations modeling the steady flow of certain incompressible generalized Newtonian fluids, Algebra i Analiz 18 (2006), 1-23. (2006) MR2244934
- Esposito L., Leonetti F., Mingione G., Regularity results for minimizers of irregular integrals with -growth, Forum Math. 14 (2002), 245-272. (2002) Zbl0999.49022MR1880913
- Esposito L., Leonetti F., Mingione G., Regularity for minimizers of functionals with - growth, Nonlinear Differential Equations Appl. 6 (1999), 133-148. (1999) Zbl0928.35044MR1694803
- Esposito L., Leonetti F., Mingione G., Sharp regularity for functionals with growth, J. Differential Equations 204 (2004), 5-55. (2004) Zbl1072.49024MR2076158
- Frehse, J., Two dimensional variational problems with thin obstacles, Math. Z. 143 (1975), 279-288. (1975) Zbl0295.49003MR0380550
- Frehse J., Seregin G., Regularity of solutions to variational problems of the deformation theory of plasticity with logarithmic hardening, Proc. St. Petersburg Math. Soc. 5 (1998), 184-222; English translation: Amer. Math. Soc. Transl. II 193 (1999), 127-152. Zbl0973.74033MR1736908
- Fusco N., Sbordone C., Some remarks on the regularity of minima of anisotropic integrals, Comm. Partial Differential Equations 18 (1993), 153-167. (1993) Zbl0795.49025MR1211728
- Giaquinta M., Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Mathematics Studies 105, Princeton University Press, Princeton, 1983. Zbl0516.49003MR0717034
- Giaquinta M., Growth conditions and regularity, a counterexample, Manuscripta Math. 59 (1987), 245-248. (1987) Zbl0638.49005MR0905200
- Gilbarg D., Trudinger N.S., Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften 224, second ed., revised third print, Springer, Berlin-Heidelberg-New York, 1998. Zbl1042.35002
- Hong M.C., Some remarks on the minimizers of variational integrals with non standard growth conditions, Boll. Un. Mat. Ital. A (7) 6 (1992), 91-101. (1992) Zbl0768.49022MR1164739
- Kauhanen J., Koskela P., Malý J., On functions with derivatives in a Lorentz space, Manuscripta Math. 100 (1999), 87-101. (1999) MR1714456
- Marcellini P., Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions, Arch. Rat. Mech. Anal. 105 (1989), 267-284. (1989) Zbl0667.49032MR0969900
- Marcellini P., Regularity and existence of solutions of elliptic equations with -growth conditions, J. Differential Equations 90 (1991), 1-30. (1991) Zbl0724.35043MR1094446
- Marcellini P., Regularity for elliptic equations with general growth conditions, J. Differential Equations 105 (1993), 296-333. (1993) Zbl0812.35042MR1240398
- Ural'tseva N.N., Urdaletova A.B., Boundedness of gradients of generalized solutions of degenerate quasilinear nonuniformly elliptic equations, Vestnik Leningrad. Univ. Mat. Mekh. Astronom no. 4 (1983), 50-56 (in Russian); English translation: Vestnik Leningrad. Univ. Math 16 (1984), 263-270. MR0725829
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.