Club-guessing, good points and diamond

Pierre Matet

Commentationes Mathematicae Universitatis Carolinae (2007)

  • Volume: 48, Issue: 2, page 211-216
  • ISSN: 0010-2628

Abstract

top
Shelah’s club-guessing and good points are used to show that the two-cardinal diamond principle κ , λ holds for various values of κ and λ .

How to cite

top

Matet, Pierre. "Club-guessing, good points and diamond." Commentationes Mathematicae Universitatis Carolinae 48.2 (2007): 211-216. <http://eudml.org/doc/250205>.

@article{Matet2007,
abstract = {Shelah’s club-guessing and good points are used to show that the two-cardinal diamond principle $\lozenge _\{\kappa ,\lambda \}$ holds for various values of $\kappa $ and $\lambda $.},
author = {Matet, Pierre},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$P_\kappa (\lambda )$; diamond principle; diamond principle; stationary subset},
language = {eng},
number = {2},
pages = {211-216},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Club-guessing, good points and diamond},
url = {http://eudml.org/doc/250205},
volume = {48},
year = {2007},
}

TY - JOUR
AU - Matet, Pierre
TI - Club-guessing, good points and diamond
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2007
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 48
IS - 2
SP - 211
EP - 216
AB - Shelah’s club-guessing and good points are used to show that the two-cardinal diamond principle $\lozenge _{\kappa ,\lambda }$ holds for various values of $\kappa $ and $\lambda $.
LA - eng
KW - $P_\kappa (\lambda )$; diamond principle; diamond principle; stationary subset
UR - http://eudml.org/doc/250205
ER -

References

top
  1. Cummings J., Foreman M., Magidor M., Canonical structure in the universe of set theory, part one, Ann. Pure Appl. Logic 129 (2004), 211-243. (2004) MR2078366
  2. Donder H.-D., Matet P., Two cardinal versions of diamond, Israel J. Math. 83 (1993), 1-43. (1993) Zbl0798.03047MR1239715
  3. Foreman M., Magidor M., Mutually stationary sequences of sets and the non-saturation of the non-stationary ideal on 𝒫 κ ( λ ) , Acta Math. 186 (2001), 271-300. (2001) MR1846032
  4. Jech T.J., Some combinatorial problems concerning uncountable cardinals, Ann. Math. Logic 5 (1973), 165-198. (1973) Zbl0262.02062MR0325397
  5. Kojman M., The A , B , C of pcf: a companion to pcf theory, part I, 1995, unpublished. 
  6. Matet P., Concerning stationary subsets of [ λ ] < κ , in: Set Theory and its Applications (J. Steprāns and S. Watson, eds.), Lecture Notes in Mathematics 1401, Springer, Berlin, 1989, pp.119-127. MR1031769
  7. Matet P., Game ideals, preprint. MR2502486
  8. Shioya M., Splitting 𝒫 κ λ into maximally many stationary sets, Israel J. Math. 114 (1999), 347-357. (1999) Zbl0955.03047MR1738689
  9. Solovay R.M., Real-valued measurable cardinals, in: Axiomatic Set Theory (D.S. Scott, ed.), Proceedings of Symposia in Pure Mathematics, vol. 13, part 1, American Mathematical Society, Providence, 1971, pp.397-428. Zbl0222.02078MR0290961

NotesEmbed ?

top

You must be logged in to post comments.