SP-scattered spaces; a new generalization of scattered spaces
Melvin Henriksen; Robert M. Raphael; Grant R. Woods
Commentationes Mathematicae Universitatis Carolinae (2007)
- Volume: 48, Issue: 3, page 487-505
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHenriksen, Melvin, Raphael, Robert M., and Woods, Grant R.. "SP-scattered spaces; a new generalization of scattered spaces." Commentationes Mathematicae Universitatis Carolinae 48.3 (2007): 487-505. <http://eudml.org/doc/250219>.
@article{Henriksen2007,
abstract = {The set of isolated points (resp. $P$-points) of a Tychonoff space $X$ is denoted by $\operatorname\{Is\}(X)$ (resp. $P(X))$. Recall that $X$ is said to be scattered if $\operatorname\{Is\}(A)\ne \varnothing $ whenever $\varnothing \ne A\subset X$. If instead we require only that $P(A)$ has nonempty interior whenever $\varnothing \ne A\subset X$, we say that $X$ is SP-scattered. Many theorems about scattered spaces hold or have analogs for SP-scattered spaces. For example, the union of a locally finite collection of SP-scattered spaces is SP-scattered. Some known theorems about Lindelöf or paracompact scattered spaces hold also in case the spaces are SP-scattered. If $X$ is a Lindelöf or a paracompact SP-scattered space, then so is its $P$-coreflection. Some results are given on when the product of two Lindelöf or paracompact spaces is Lindelöf or paracompact when at least one of the factors is SP-scattered. We relate our results to some on RG-spaces and $z$-dimension.},
author = {Henriksen, Melvin, Raphael, Robert M., Woods, Grant R.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {scattered spaces; SP-scattered spaces; CB-index; sp-index; $P$-points; $P$-spaces; strong $P$-points; RG-spaces; $z$-dimension; locally finite; Lindelöf spaces; paracompact spaces; $P$-coreflection; $G_\{\delta \}$-topology; product spaces; scattered spaces; SP-scattered spaces; CB-index; sp-index; -points; -spaces; strong -points},
language = {eng},
number = {3},
pages = {487-505},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {SP-scattered spaces; a new generalization of scattered spaces},
url = {http://eudml.org/doc/250219},
volume = {48},
year = {2007},
}
TY - JOUR
AU - Henriksen, Melvin
AU - Raphael, Robert M.
AU - Woods, Grant R.
TI - SP-scattered spaces; a new generalization of scattered spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2007
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 48
IS - 3
SP - 487
EP - 505
AB - The set of isolated points (resp. $P$-points) of a Tychonoff space $X$ is denoted by $\operatorname{Is}(X)$ (resp. $P(X))$. Recall that $X$ is said to be scattered if $\operatorname{Is}(A)\ne \varnothing $ whenever $\varnothing \ne A\subset X$. If instead we require only that $P(A)$ has nonempty interior whenever $\varnothing \ne A\subset X$, we say that $X$ is SP-scattered. Many theorems about scattered spaces hold or have analogs for SP-scattered spaces. For example, the union of a locally finite collection of SP-scattered spaces is SP-scattered. Some known theorems about Lindelöf or paracompact scattered spaces hold also in case the spaces are SP-scattered. If $X$ is a Lindelöf or a paracompact SP-scattered space, then so is its $P$-coreflection. Some results are given on when the product of two Lindelöf or paracompact spaces is Lindelöf or paracompact when at least one of the factors is SP-scattered. We relate our results to some on RG-spaces and $z$-dimension.
LA - eng
KW - scattered spaces; SP-scattered spaces; CB-index; sp-index; $P$-points; $P$-spaces; strong $P$-points; RG-spaces; $z$-dimension; locally finite; Lindelöf spaces; paracompact spaces; $P$-coreflection; $G_{\delta }$-topology; product spaces; scattered spaces; SP-scattered spaces; CB-index; sp-index; -points; -spaces; strong -points
UR - http://eudml.org/doc/250219
ER -
References
top- Alster K., On spaces whose product with every Lindelöf space is Lindelöf, Colloq. Math. 54 (1987), 171-178. (1987) Zbl0688.54013MR0948511
- Alster K., On the class of all spaces of weight not greater than whose Cartesian product with every Lindelöf space is Lindelöf, Fund. Math. 129 (1988), 133-140. (1988) MR0959437
- Alster K., On the class of -metrizable spaces whose product with every paracompact space is paracompact, Topology Appl. 153 (2006), 2508-2517. (2006) Zbl1101.54012MR2243730
- Alster K., Engelking R., Subparacompactness and product spaces, Bull. Acad. Polon. Acad. Sci. Sér. Math. Astronom. Phys. 20 (1972), 763-767. (1972) Zbl0238.54018MR0313992
- Blair R., Spaces in which special sets are -embedded, Canad. J. Math. 28 (1976), 673-690. (1976) Zbl0359.54009MR0420542
- Comfort W.W., Negrepontis S., Continuous Pseudometrics, Marcel Dekker, Inc., New York, 1975. Zbl0306.54004MR0410618
- Engelking R., General Topology, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
- Gewand M., The Lindelöf degree of scattered spaces and their products, J. Austral. Math. Soc. 37 (1984), 98-105. (1984) Zbl0545.54014MR0742247
- Gillman L., Jerison M., Rings of Continuous Functions, Springer, New York, 1976. Zbl0327.46040MR0407579
- Henriksen M., Raphael R., Woods R.G., A minimal regular ring extension of , Fund. Math. 172 (2002), 1-17. (2002) Zbl0995.46022MR1898399
- Kannan V., Rajagopalan M., Scattered spaces II Illinois J. Math., 21 (1977), 735-751. (1977) MR0474180
- Levy R., Rice M., Normal -spaces and the -topology, Colloq. Math. 44 (1981), 227-240. (1981) Zbl0496.54034MR0652582
- Mack J., Rayburn M., Woods R.G., Local topological properties and one point extensions, Canad. J. Math. 24 (1972), 338-348. (1972) Zbl0242.54019MR0295297
- Martinez J., Zenk E., Dimension in algebraic frames II. Applications to frames of ideals in , Comment. Math. Univ. Carolin. 46 (2005), 607-636. (2005) Zbl1121.06009MR2259494
- Nagami K., Dimension Theory, Academic Press, New York, 1970. Zbl0224.54060MR0271918
- Noble N., Products with closed projections, I, Trans. Amer. Math. Soc. 160 (1971), 169-183. (1971) MR0283749
- Porter J., Woods R.G., Extensions and Absolutes of Hausdorff Spaces, Springer, New York, 1988. Zbl0652.54016MR0918341
- Rajagopalan M., Scattered spaces III, J. Indian Math. Soc. 41 (1977), 405-427 (1978). (1977) Zbl0463.54034MR0515395
- Rudin M., Watson S., Countable products of scattered paracompact spaces, Proc. Amer. Math. Soc. 89 (1983), 551-552. (1983) Zbl0518.54021MR0715885
- Semadeni Z., Sur les ensembles clairsemés, Dissertationes Math. 19 (1959). (1959) Zbl0137.16002MR0107849
- Telgarsky R., Total paracompactness and paracompact dispersed spaces, Bull. Acad. Polon. Sci. Sér. Math. Astronom. Phys. 16 (1968), 567-572. (1968) Zbl0164.53101MR0235517
- Telgarsky R., -scattered and paracompact spaces, Fund. Math. 73 (1971), 59-74. (1971) Zbl0226.54018MR0295293
- Telgarsky R., Review of KR77, MR0474180 (57 #13830), .
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.