Characterizations of -predual spaces by centerable subsets
Commentationes Mathematicae Universitatis Carolinae (2007)
- Volume: 48, Issue: 2, page 239-243
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topDuan, Yanzheng, and Lin, Bor-Luh. "Characterizations of $L^1$-predual spaces by centerable subsets." Commentationes Mathematicae Universitatis Carolinae 48.2 (2007): 239-243. <http://eudml.org/doc/250226>.
@article{Duan2007,
abstract = {In this note, we prove that a real or complex Banach space $X$ is an $L^1$-predual space if and only if every four-point subset of $X$ is centerable. The real case sharpens Rao’s result in [Chebyshev centers and centerable sets, Proc. Amer. Math. Soc. 130 (2002), no. 9, 2593–2598] and the complex case is closely related to the characterizations of $L^1$-predual spaces by Lima [Complex Banach spaces whose duals are $L_1$-spaces, Israel J. Math. 24 (1976), no. 1, 59–72].},
author = {Duan, Yanzheng, Lin, Bor-Luh},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Chebyshev radius; centerable subsets and $L^1 $-predual spaces; Chebyshev radius},
language = {eng},
number = {2},
pages = {239-243},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Characterizations of $L^1$-predual spaces by centerable subsets},
url = {http://eudml.org/doc/250226},
volume = {48},
year = {2007},
}
TY - JOUR
AU - Duan, Yanzheng
AU - Lin, Bor-Luh
TI - Characterizations of $L^1$-predual spaces by centerable subsets
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2007
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 48
IS - 2
SP - 239
EP - 243
AB - In this note, we prove that a real or complex Banach space $X$ is an $L^1$-predual space if and only if every four-point subset of $X$ is centerable. The real case sharpens Rao’s result in [Chebyshev centers and centerable sets, Proc. Amer. Math. Soc. 130 (2002), no. 9, 2593–2598] and the complex case is closely related to the characterizations of $L^1$-predual spaces by Lima [Complex Banach spaces whose duals are $L_1$-spaces, Israel J. Math. 24 (1976), no. 1, 59–72].
LA - eng
KW - Chebyshev radius; centerable subsets and $L^1 $-predual spaces; Chebyshev radius
UR - http://eudml.org/doc/250226
ER -
References
top- Bandyopadhyay P., Rao T.S.S.R.K., Central subspaces of Banach spaces, J. Approx. Theory 103 (2000), 206-222. (2000) Zbl0965.46005MR1749962
- Davis W.J., A characterization of spaces, J. Approx. Theory 21 (1977), 315-318. (1977) Zbl0373.46034MR0454592
- Hanner O., Intersections of translates of convex bodies, Math. Scand. 4 (1956), 65-87. (1956) Zbl0070.39302MR0082696
- Holmes R.B., A course on optimization and best approximation, Lecture Notes in Math., Vol. 257, Springer, Berlin, 1972. Zbl0235.41016MR0420367
- Hustad O., Intersection properties of balls in complex Banach spaces whose dual are -spaces, Acta Math. 132 (1974), 282-313. (1974) MR0388049
- Lacey H.E., The isometric theory of classical Banach spaces, Grundlehren Math. Wiss., Band 208, Springer, New York-Heidelberg, 1974. Zbl0285.46024MR0493279
- Lima A., Complex Banach spaces whose duals are -spaces, Israel J. Math. 24 (1976), 1 59-72. (1976) Zbl0334.46014MR0425584
- Lima A., Intersection properties of balls and subspaces in Banach spaces, Trans. Amer. Math. Soc. 227 (1977), 1-62. (1977) Zbl0347.46017MR0430747
- Lindenstrauss J., Extension of compact operators, Mem. Amer. Math. Soc., Vol. 48, Provindence, 1964. Zbl0141.12001MR0179580
- Rao T.S.S.R.K., Chebyshev centers and centerable sets, Proc. Amer. Math. Soc. 130 (2002), 9 2593-2598. (2002) MR1900866
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.